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Abstract. Nielsen transformation is a standard approach for solving 
word equations: by repeatedly splitting equations and applying simpli-
fication steps, equations are rewritten until a solution is reached. When 
solving a conjunction of word equations in this way, the performance 
of the solver will depend considerably on the order in which equations 
are processed. In this work, the use of Graph Neural Networks (GNNs) 
for ranking word equations before and during the solving process is 
explored. For this, a novel graph-based representation for word equations 
is presented, preserving global information across conjuncts, enabling the 
GNN to have a holistic view during ranking. To handle the variable num-
ber of conjuncts, three approaches to adapt a multi-classification task 
to the problem of ranking equations are proposed. The training of the 
GNN is done with the help of minimum unsatisfiable subsets (MUSes) of 
word equations. The experimental results show that, compared to state-
of-the-art string solvers, the new framework solves more problems in 
benchmarks where each variable appears at most once in each equation. 

Keywords: Word equation · Graph neural network · String theory 

1 Introduction 

A word equation is an equality between two strings that may contain variables 
representing unknown substrings. Solving a word equation problem involves find-
ing assignments to these variables that satisfy the equality. Word equations 
are crucial in string constraints encountered in program verification tasks, such 
as validating user inputs, ensuring proper string manipulations, and detecting 
potential security vulnerabilities like injection attacks. The word equation prob-
lem is decidable, as shown by Makanin [ 33]; while the precise complexity of the 
problem is still open, it is know to be NP-hard and in PSPACE [ 38]. 

Abdulla et al. [ 11] recently proposed a Nielsen transformation-based algo-
rithm for solving word equation problems [ 36]. This algorithm solves word equa-
tions by recursively applying a set of inference rules to branch and simplify the 
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problem until a solution is reached, in a tableau-like fashion. When multiple word 
equations are present, the algorithm must select the equation to process next at 
each proof step. This selection process is critical and heavily influences the per-
formance of the algorithm, as the unsatisfiability of a set of equations can often 
be shown by identifying a small unsatisfiable core of equations. At the same time, 
the search tree can contain infinite branches on which no solutions can be found, 
so that bad decisions can lead a solver astray. The situation is similar to the case 
of first-order logic theorem provers, where the choice of clauses to process plays 
a decisive role in determining efficiency. In the latter context, several deep learn-
ing techniques have been introduced to guide theorem provers [ 10,16,17,27,44]. 
However, for word equation problems, the application of learning techniques for 
selecting equations remains largely unexplored. 

In this work, we employ Graph Neural Networks (GNNs) [ 15] to guide the 
selection of word equations at each iteration of the algorithm. Our research com-
plements existing techniques for learning branching heuristics in word equation 
solvers [ 11]. We refer to the selection step as the ranking process. For this, we 
enhanced the existing algorithm [ 11] to enable the re-ordering of conjunctive 
word equations. The extension preserves the soundness and the completeness 
(for finding solutions) of the algorithm. We refer to this extended algorithm as 
the split algorithm throughout the paper. 

The primary challenge in training a deep learning model to guide the ranking 
process lies in managing a variable number of inputs. In our work, this specifically 
involves handling a varying number of word equations depending on the input. 
Unlike with branching heuristics, which have to handle only a fixed and small 
number of branches (typically 2 to 3), the ranking process must handle a variable 
number of conjuncts. To address this challenge, we adapt multi-classification 
models to accommodate inputs of varying sizes using three distinct approaches. 
Additionally, to effectively train the GNNs, we enhance the graph representations 
of word equations from [ 11] by incorporating global term occurrence information. 

Our model is trained using data from two sources: (1) Minimal Unsatisfiable 
Subsets (MUSes) of word equations computed by other solvers, and (2) data 
extracted by running the split algorithm with non-GNN-based ranking heuristics. 
MUSes computed by solvers such as Z3 [ 35] and  cvc5 [ 14] help detect unsatisfiable 
conjuncts early, enabling prompt termination and improved efficiency. When the 
split algorithm tackles conjunctive word equations, each ranking decision creates 
a branch in a decision tree. By extracting the shortest path from this tree, we 
obtain the most effective sequence of choices, which we then use as training data. 

Moreover, we explore seven options that combine the trained model with 
both random and manually designed heuristics for the ranking process. 

We evaluated our framework on artificially generated benchmarks inspired 
by [ 20]. The benchmarks are divided into two categories: linear and non-linear, 
where linear means that, within a single equation, a variable can occur only 
once, while non-linear allows a variable to appear multiple times. Note that this 
definition of linearity applies to individual equations: in systems with multiple 
equations, even if each equation is linear, shared variables can cause a variable 
to appear multiple times within the system.
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Finally, we compare our framework with several leading SMT solvers and 
a word equation solver, including Z3, Z3-Noodler [ 19], cvc5, Ostrich [ 18], and 
Woorpje [ 20]. The experimental results show that for linear problems, our frame-
work outperforms all leading solvers in terms of the number of solved problems. 
For non-linear problems, when the occurrence frequency of the same variables 
(non-linearity) is low, our algorithm remains competitive with other solvers. 

In summary, the contributions of this paper are as follows: (i) We adapt 
the Nielsen transformation-based algorithm [ 11] to allow control over the order-
ing of word equations at each iteration. (ii) We develop a framework to train 
and deploy a deep learning model for ranking and ordering conjunctive word 
equations within the split algorithm. The model leverages MUSes generated by 
leading solvers and uses graph representations enriched with global information 
of the formula. We propose three strategies to adapt multi-classification mod-
els for ranking tasks and explore various integration methods within the split 
algorithm. (iii) Experimental results demonstrate that our framework performs 
effectively on linear problems, with the deep learning model significantly enhanc-
ing performance. However, its effectiveness on non-linear problems is constrained 
by the limitations of the inference rules. 

2 Preliminaries 

We first define the syntax of word equations and the concept of satisfiability. 
Next, we explain the message-passing mechanism of Graph Neural Networks 
(GNNs) and describe the specific GNN model employed in our experiments. 

Word Equations. We assume a finite non-empty alphabet .Σ and write .Σ∗ for 
the set of all strings (or words) over . Σ. The empty string is denoted by . . We  
work with a set .Γ of string variables, ranging over words in .Σ∗. The  symbol  . ·
denotes the concatenation of two strings; in our examples, we often write .uv as 
shorthand for .u · v. The syntax of word equations is defined as follows, where 
.X ∈ Γ ranges over variables and .c ∈ Σ over letters: 

. Formulae φ : : = true | e ∧ φ Words w : : = | t · w

Equations e : : = w = w Terms t : : = X | c

Definition 1 (Satisfiability of conjunctive word equations). A formula . φ
is satisfiable (SAT) if there exists a substitution .π : Γ → Σ∗ such that, when 
each variable .X ∈ Γ in . φ is replaced by .π(X), all equations in . φ hold. 

Definition 2 (Linearity of a word equation). A word equation is called 
linear if each variable occurs at most once. Otherwise, it is non-linear. 

Graph Neural Networks. Message Passing-based GNNs (MP-GNNs) [ 23] are  
designed to learn features of graph nodes (and potentially the entire graph) by 
iteratively aggregating and transforming feature information from the neighbor-
hood of a node. Consider a graph .G = (V,E), with .V as the set of nodes and
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.E ⊆ V × V as the set of edges. Each node .v ∈ V has an initial representation 

.xv ∈ R
n and a set of neighbors .Nv ⊆ V . In an MP-GNN comprising . T message-

passing steps, node representations are iteratively updated. The initial node 
representation of . v at time step 0 is .H0

v = xv. At each step . t, the representation 
of node . v, denoted as .Ht

v, is updated using the equation: 

.Ht
v = ηt(ρt({Ht−1

u | u ∈ Nv}),Ht−1
v ), (1) 

where .Ht−1
u is the node representation of . u in the previous iteration .t − 1, and  

node . u is a neighbor of node . v. In this context, .ρt : (Rn)|Nv| → R
n is an 

aggregation function with trainable parameters (e.g., an MLP followed by sum, 
mean, min, or max) that aggregates the node representations of . v’s neighboring 
nodes at the .t-th iteration. Along with this, .ηt : (Rn)2 → R

n is an update 
function with trainable parameters (e.g., an MLP) that takes the aggregated 
node representation from .ρt and the node representation of . v in the previous 
iteration as input, and outputs the node representation of . v at the .t-th iteration. 

In this study, we employ Graph Convolutional Networks (GCNs) [ 29] to guide 
our algorithm due to their computational efficiency to generalize across tasks 
without the need for task-specific architectural modifications. In GCNs, the node 
representation .Ht

v of . v at step .t ∈ {1, ..., T} where .T ∈ N is computed by 

.Ht
v = ReLU(MLPt(mean{Ht−1

u | u ∈ Nv ∪ {v}})), (2) 

where each .MLPt is a fully connected neural network, ReLU (Rectified Linear 
Unit) [ 13] is the non-linear function .f(x) = max(0, x), and  .H0

v = xv. 

3 Split Algorithm with Ranking 

Split Algorithm. Algorithm 1, .splitEquations, determines the satisfiability 
of a word equation formula . φ by recursively applying inference rules from [ 11]. 

The algorithm begins by checking the satisfiability of the conjunctive formula 
(Line 2). If all word equations can be eliminated in this way, then . φ is SAT. 
If any conjunct is unsatisfiable (UNSAT), then . φ is UNSAT. Otherwise, the 
satisfiability status remains unknown (UKN). If . φ is in one of the first two cases, 
its status is returned (Line 3). 

Otherwise (Line 4), .RankEqs orders all conjuncts using either manually 
designed or data-driven methods. Next, the function .ApplyRules matches 
and applies the corresponding inference rules to generate branches—alternative 
prospective solving paths for the same equation. This step is called the branching 
process. Notably, rules .R7 and .R8 generate two and three branches, respectively, 
while all the other rules do not cause any branching. 

Next, the .splitEquations call (Line 9) recursively checks the satisfiabil-
ity of each branch. Let .{b1, . . . , bn} be the set of branches. The formula . φ has 
status SAT if at least one branch .bi is satisfiable, UNSAT if all branches are 
unsatisfiable, and UKN otherwise.
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Data: A formula  . φ
Result: The satisfiability status of .φ (i.e., SAT, UNSAT, or  UKN ) and  the  

simplified version of . φ
1 begin 
2 .res ← CheckFormulaSatisfiability(. φ) 
3 if res .= UKN then return res, . φ
4 else 
5 .φs = RankEqs(. φ) // Ranking process 

6 Branches = applyRules(.φs) // Branching process 

7 . uknFlag ← 0
8 for b in Branches do 
9 .resb , φb=splitEquations(b) 

10 if .resb = SAT  then return SAT, . φb

11 if .resb = UKN  then . uknFlag ← 1

12 if .uknFlag = 1 then return UKN, . φ
13 else return UNSAT, . φ

Algorithm 1: SplitEquations algorithm. 

Since the inference rules apply to the leftmost equation, the performance 
of the algorithm is strongly influenced by both the order in which branches 
are processed (Line 8) and the ordering of equations in . φ (Line 5). While the 
impact of branch ordering has been studied in [ 11], this paper explores whether 
employing a data-driven heuristic in .RankEqs can enhance termination. 

The baseline option to implement .RankEqs is referred to as RE1: Baseline. 
It computes the priority of a word equation . p using the following definition: 

. p =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if =
2 otherwise, if = u · v or u · v =
3 otherwise, if a · u = b · v or u · a = v · b

4 otherwise, if a · u = a · v

5 otherwise

where .a, b ∈ Σ, and  .u, v are sequences of variables and letters. Smaller numbers 
indicate higher priority, assigning greater precedence to simpler cases where sat-
isfiability is obvious. Word equations with the same priorities between 1 and 
4 are further ordered by their length (i.e., the number of terms), with shorter 
equations taking precedence. For word equations with a priority of 5, the origi-
nal input order is maintained. The newly created equations inherit the ranking 
of their parents. We refer to the split algorithm using RE1 for .RankEqs as 
DragonLi. The correctness of Algorithm 1 follows directly from the soundness 
and local completeness of the inference rules in [ 11]: 

Lemma 1 (Soundness of Algorithm 1). For a conjunctive word equation 
formula . φ, if Algorithm 1 terminates with the result SAT or UNSAT, then . φ is 
SAT or UNSAT, respectively.
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AND-OR Tree. The search tree explored by the algorithm can be represented 
as an AND-OR tree, as shown in Fig. 1. The example illustrates the three paths, 
each placing different equations in the first position, generated by the ranking 
and branching process to solve the word equation . φ = (Xb = bXX ∧ = ∧X =
a), where .a, b ∈ Σ and .X ∈ Γ . 

Example 1. In the first step, . φ can be reordered in three distinct ways by prior-
itizing one conjunct to occupy the leftmost position (we ignore the order of the 
rest two equations, as their order does not influence the next rule application). 
Thus, the root of the tree branches into three paths. For each ranked formula, the 
inference rules are then applied to execute the branching process. By iterating 
these two steps alternately, the complete AND-OR tree is constructed. Notably, 
continuously selecting the leftmost branch that prioritizes .Xb = bXX at the 
root and applying the left branch of .R7 may lead to non-termination, as the 
length of the word equation keeps increasing. In contrast, prioritizing .X = a at 
the root results in a solution (UNSAT) at a relatively shallow depth, avoiding the 
risk of non-termination caused by further ranking and branching. In this case, 
exploring only a single branch during the ranking process suffices to determine 
the satisfiability of . φ. This optimal path is highlighted with solid edges. 

Fig. 1. AND-OR tree resulting from the word equation .Xb = bXX ∧ = ∧ X = a. 
The formulas enclosed in boxes are generated by .RankEqs, while the formulas without 
boxes are obtained from .ApplyRules. 

4 Guiding the Split Algorithm 

This section details the training and application of a GNN model in Algorithm 1. 
We first describe the process of collecting training data, followed by the graph-
based representation of each word equation. Next, we outline three model struc-
tures for ranking a set of word equations. Finally, we discuss methods for inte-
grating the trained model back into the algorithm.
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4.1 Training Data Collection 

Assume that . φ is an unsatisfiable conjunctive word equation consisting of a set 
of conjuncts . E . 

Definition 3 (Minimal Unsatisfiable Set). A subset  .U ⊆ E is a Minimal 
Unsatisfiable Set (MUS) if the conjunction of .U is unsatisfiable, and for all 
conjuncts .e ∈ U , the conjunction of subset .U \ {e} is satisfiable. 

We collect training data from two sources: (1) MUSes extracted by other 
solvers, including Z3, Z3-Noodler, cvc5, and  Ostrich; and (2) formulas from the 
ranking process that lie on the shortest path from the subtree leading to UNSAT 
in the AND-OR trees. A numerical example of these two sources is provided in 
Sect. 5.2. 

For training data from source (1), we first pass all problems to DragonLi. 
Next, we identify unsolvable problems and forward them to other solvers. If any 
solver successfully solves a problem, we select the one that finds a solution in 
the shortest time. This solver is then used to extract the MUS by exhaustively 
checking the satisfiability of all subsets of the conjuncts. Finally, each conjunct 
within a set of word equations is labeled based on its membership in the MUS 
and its length. 

Formally, given a formula .φ = e1 ∧ · · · ∧ en, its conjuncts are denoted . E =
{e1, . . . , en}, and an MUS .U ⊆ E . The corresponding labels of .ei ∈ E are . Yn =
{y1, . . . , yn}, where .yi ∈ {0, 1}, and their length is denoted .|ei|. The label .yi is 
computed as follows: 

.yi =
1 if ei ∈ U and |ei| = min {|e| | e ∈ U} ,

0 otherwise.
(3) 

We assign label 1 only to the shortest equation in the MUS, rather than labeling 
all MUS equations as 1 and non-MUS equations as 0, because the algorithm 
selects only one equation to proceed at each iteration. Our goal is to identify the 
most efficient choice. We assume that the shortest equation in the MUS is more 
likely to lead to quicker termination, as the branching process aims to reduce 
equation length until a form is reached where satisfiability (or unsatisfiability) 
can be easily concluded. 

To collect training data from source (2), we pass the problems, along with 
the MUS extracted from other solvers, to DragonLi. If  DragonLi solves the prob-
lem, multiple paths to UNSAT are generated by sequentially prioritizing each 
equation at the leftmost position in the ranked word equation. 

Subsequently, we export and label each conjunctive word equation along 
the shortest path in the subtree leading to UNSAT. Formally, given a set of 
conjuncts .E = {e1, . . . , en} of a conjunctive word equation, the corresponding 
labels .Yn = (y1, . . . , yn) are computed by 

.yi =
1 if ei in the shortest path of a subtree leading to UNSAT,

0 otherwise.
(4)
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Fig. 2. The steps for constructing graph representation for the conjunctive word equa-
tions .XaX = Y ∧ aaa = XaY where .X, Y are variables and . a is a letter. 

For both sources, when . n
i=1 yi > 1, we keep the first equation with label 

1 and discard the rest equations with label 1 to ensure . n
i=1 yi = 1. When 

.
n
i=1 yi = 0, we discard this training data due to no positive label. 

4.2 Graph Representation for Conjunctive Word Equations 

The graph representation of a single word equation is discussed in [ 11]. However, 
since word equations are interconnected through shared variables, ranking them 
requires not only local information about individual equations but also a global 
perspective. By considering the entire set of word equations collectively, we can 
incorporate dependencies and shared structures, improving the ranking process. 

To achieve this, we first represent each conjunctive word equation indepen-
dently. Then, we compute the occurrences of variables and letters across all 
equations and integrate this global information into each individual graph rep-
resentation. This enriched representation captures both the complexity of indi-
vidual equations and their interactions within the system. 

In details, the graph representation of a word equation is defined as . G =
(V,E, v=, VT, VVar, V

0
T , V 1

T , V 0
Var, V

1
Var), where .V is the set of nodes, . E ⊆ V × V

is the set of edges, and .v= ∈ V is a special node representing the “=” symbol. 
The sets .VT ⊆ V and .VVar ⊆ V contain letter and variable nodes, respectively. 
Additionally, .V 0

T and .V 1
T are special nodes representing letter occurrences and 

.V 0
Var and .V 1

Var analogously represent variable occurrences. 
Figure 2 illustrates the two steps involved in constructing the graph repre-

sentation of the conjunctive word equations .XaX = Y ∧ aaa = XaY , where 
.{X,Y } ⊆ Γ and .a ∈ Σ: 

– Step 1: Inspired by Abstract Syntax Trees (ASTs), we begin to build the 
graph by placing the “. =” symbol as the root node. The left and right chil-
dren of the root represent the leftmost terms of each side of the equation, 
respectively. Subsequent terms are organized as singly linked lists of nodes.
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– Step 2: Calculate the number of occurrences of all terms across the conjunc-
tive word equations. In this example, .Occurrence(X) = 3, .Occurrence(Y ) = 2, 
and .Occurrence(a) = 5. Their binary encodings are . 11, .10 and .101 respec-
tively. We encode these as sequentially connected nodes: .(V 1

V ar, V
1
V ar) for . X, 

.(V 1
V ar, V

0
V ar) for . Y , and  .(V 1

T , V 0
T , V 1

T ) for . a. Finally, we connect the roots of 
these nodes to their corresponding variable and letter nodes. 

We chose binary encoding because using unary encoding would significantly 
increase the graph size, making computation inefficient. Higher-base encodings 
like ternary or decimal tend to blur structural distinctions, i.e., different values 
may be represented using the same number of nodes, making it hard for the graph 
structure to reflect meaningful differences. Binary encoding strikes a balance. It 
keeps the graph size manageable while preserving enough structural information 
for our GNN to effectively process word equations at the scale we target. 

The rationale behind our other choices of graph representation for word equa-
tions, along with a discussion of alternative representations, is provided in the 
repository [ 2]. 

4.3 Training of Graph Neural Networks 

In the function RankEqs of Algorithm 1, equations can be ranked and sorted 
based on predicted rank scores from a trained model. Given a conjunctive word 
equation .φ = e1∧· · ·∧en, the model outputs a ranking, i.e., a list of real numbers 
.Ŷn = (ŷ1, . . . , ŷn) in which a higher value indicates a higher rank. For example, 
for a conjunctive word equation .e1 ∧ e2, the model might output .Ŷ2 = (0.3, 0.7), 
indicating that .e2 is expected to lead to a solution more quickly than . e1, and  
the equations should be reordered as .e2 ∧ e1. 

Forward Propagation. To compute this ranking, we first transform the word 
equations .{e1, ..., en} to their graph representations .G = {G1, ..., Gn} where 
.Gi = (V,E, v=, VT, VVar, V

0
T , V 1

T , V 0
Var, V

1
Var). Each node .v ∈ V is first assigned an 

integer representing the node type: .v ∈ {VT , VV ar, V
0
T , V 1

T , V 0
V ar, V

1
V ar}∪{v=}. 

Those integers are then passed to a trainable embedding function . MLP0 : Z →
R

m to compute all the initial node representations .H0
i in .Gi. 

Equation (2) defines how node representations are updated. By iterating 
this update rule, we obtain the node representations .Ht

i = GCN(Ht−1
i , E) for 

.t ∈ {1, . . . , T}, where the relation .E is used to identify neighbors. Subsequently, 
the representation of the entire graph is obtained by summing the node repre-
sentations at time step . T , resulting in .HGi

= 1
n

n
i=1 HT

i . 
Then, we introduce three ways to compute the .Ŷn: 

– Task 1: Each graph representation .HGi
is given to a trainable classifier 

.MLP1 : R
m → R

2, which outputs .zi = MLP1(HGi
) = (z1, z2). The score 

for graph . i is then computed as .yi = softmax(zi)1 for .yi ∈ Ŷn where 
..softmax(zi) = ( ez1

n
j=1 ezj

, . . . , ezn
n
j=1 ezj

) and .softmax(·)1 is the first element 
of .softmax(·). It represents the probability of the class in the first index.
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– Task 2: All graph representations in a conjunctive word equations are first 
aggregated by .HG = 1

n
n
i=1 HGi

. Then, we compute the score by of each 
graph by .yi = softmax(MLP2(HGi

||HG))1 for .yi ∈ Ŷn where . MLP2 : R2m →
R

2 is a trainable classifier and . || denotes concatenation of two vectors. 
– Task 3: We begin by fixing a limit . n of equation within a conjunctive word 

equation. For conjunctive word equations containing more than . n word equa-
tions, we first sort them by length (in ascending order) and then trim the 
list to . n equations. Next, we compute scores for resulting equations using 
.Ŷn = MLP3(HG1 , . . . , HGn

) where .MLP3 : Rnm → R
n is a trainable classi-

fier. Scores for any trimmed word equations are set to 0. If a conjunctive word 
equations contains fewer than . n word equations, we fill the list with empty 
equations to reach . n, and then compute .Ŷn in the same way. 

Backward Propagation. The trainable parameters of the model include the 
weights of the embedding function .MLP0, the classifiers .MLP1, .MLP2, .MLP3, 
and the GCNs. Those trainable parameters are optimized together by minimizing 
the categorical cross-entropy loss between the predicted label .ŷi ∈ Ŷn and the 
true label .yi ∈ Yn, using the equation .loss = − 1

n
n
i=1 yi log(ŷi) where . n is the 

number of conjuncts in the conjunctive word equations. 

4.4 Ranking Options 

In Algorithm 1, we introduce seven implementations of RankEqs, aimed at 
evaluating the efficiency of deterministic versus stochastic ranking methods. 

– RE1, Baseline: A baseline defined in Sect. 3. 
– RE2, Random: RE1 is first used to compute the priority of each word 

equation, and then equations with a priority of 5 are randomly ordered. This 
approach aims to add some randomness to the baseline. 

– RE3, GNN: Equations ranked at 5 by RE1 are then ranked and sorted using 
the GNN model. While this option incurs higher overhead due to frequent use 
of the GNN model, it provides the most fine-grained guidance. 

– RE4, GNN-Random: Based on RE3, there is a 50% chance of invoking 
the GNN model and a 50% chance of randomly sorting word equations with 
a priority of 5. This option provides insight into the performance when intro-
ducing a random process into GNN-based ranking. 

– RE5, GNN-one-shot: Based on the priority assigned by RE1, the GNN 
model is used to rank and sort equations with a priority of 5 the first time 
they occur, while it is managed by RE1 in subsequent iterations. This option 
invokes the GNN only once to minimize its overhead, while still maintaining 
its influence on subsequent iterations. Ranking and sorting the word equations 
early in the process has a greater impact on performance than doing them 
later. 

– RE6, GNN-each-n-iteration: Based on RE3, instead of calling the GNN 
model each time multiple word equations have priority 5, it is invoked only 
every .n = 5000 calls to the .RankEqs function. This option explores a balance 
between RE3 and RE5.
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– RE7, GNN-formula-length: Based on RE3, instead of calling the GNN 
model each time multiple word equations have priority 5, it is invoked only 
after .n = 1000 calls to the .RankEqs function when the length of the current 
word equation does not decrease. This option introduces dynamic control over 
calling the GNN model. 

5 Experimental Results 

This section describes the benchmarks and the methods used for training data 
collection. We also compare our evaluation data with leading solvers. The train-
ing and prediction workflow can be find in the repository [ 5]. 

5.1 Benchmarks 

We initially transformed real-world benchmarks from the non-incremental QF S, 
QF SLIA, and QF SNLIA tracks of the SMT-LIB benchmark suite [ 6], as well 
as those from the Zaligvinder benchmark suite [ 7], into word equation prob-
lems by removing length constraints, boolean operators, and regular expressions. 
However, these transformed problems were overly simplistic, as most solvers, 
including DragonLi, solved them easily. Consequently, we shifted to evaluating 
solvers using artificially generated word equation problems inspired by prior 
research [ 11,20]. We summarize the benchmarks as follows: 

– Benchmark A1: Given a finite set of letters .T and a set of variables . V , 
the process begins by generating individual word equations of the form . s =
s, where . s is a string composed of randomly selected letters from . T . The  
maximum length of . s is capped at 60. Next, substrings in . s on both sides of the 
equation are replaced . n times with the concatenation of .m fresh variables from 
. V . Here .|T | = 6, .|V | = 10, .n ∈ [0, 5], and  .m ∈ [1, 5]. Finally, multiple such 
word equations are conjoined to form a conjunctive word equation problem. 
The number of equations to be conjoined is randomly selected between 1 and 
100. Since each replacement variable is a fresh variable from . V , individual 
equations in the problem remain linear. 

– Benchmark A2: This benchmark is generated using the same method as 
Benchmark A1; however, different parameters are employed to increase the 
difficulty while ensuring that the problem remains linear. Specifically, we use 
.|T | = 26, .|V | = 100, .n ∈ [0, 16], and  .m = 1. 

– Benchmark B: This benchmark is generated by the same method as Bench-
mark A1, except it does not use fresh variables to replace substrings in . s. This 
causes a single variable to potentially occur multiple times in an equation, 
making the problem non-linear. The number of equations to be conjoined is 
randomly picked between 2 and 50, and the maximum length of . s is capped 
at 50. In this benchmark, we use .|T | = 10, .|V | = 10, .n ∈ [0, 5], and  .m = 1.
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– Benchmark C: We first generate a word equation in the following format: 

.. XnaXnbXn−1 · · · bX1 = aXnXn−1Xn−1b · · · X1X1baa

where .X1, ...,Xn are variables and . a and . b are letters. Then, we replace each . b
with one side of an individual equation generated by Benchmark A1. Finally, 
we join the individual equations to form a conjunctive word equation problem, 
with the maximum number of conjuncts capped at 100. This method ensures 
that the resulting benchmark is highly non-linear. 

The statistics of the evaluation data for benchmarks is shown in the reposi-
tory [ 3]. 

5.2 Training Data Collection 

Table 1 outlines the training data collection. We generate 60,000 problems per 
benchmark and check their satisfiability with DragonLi. For instance, Benchmark 
A1 contains 1,859 unsolved problems, which are then passed to solvers such as 
Z3, Z3-Noodler, cvc5, and  Ostrich. Together, these solvers identify 181 SAT and 
1,678 UNSAT problems, with no single tool able to solve them all. 

For UNSAT problems, we extract Minimal Unsatisfiable Subsets (MUSes) 
using the fastest solver. This yields 909 problems with extractable MUSes, as 
detailed in the repository [ 4]. We rank word equations within each problem 
based on their presence in the MUS and their length, then pass the ranked 
problems back to DragonLi. This allows DragonLi to prioritize word equations 
appearing in the MUS, enabling it to solve 518 new problems. Problems in 
the row Have MUS are transformed into a single labeled data (a conjunctive 
word equation). Problems in the row DragonLi using MUS are transformed into 
multiple labeled data, each representing a ranking process step on the shortest 
path to the solution. 

The ranking heuristic’s effectiveness varies with problem benchmarks. For 
Benchmarks A1 and A2, 57% to 58% of problems with MUSes are solved. In 
Benchmark B, the success rate drops to 20%, while for Benchmark C, the heuris-
tic has no effect, solving 0 additional problems. Consequently, no training data 
or model was generated for Benchmark C. 

6 Experimental Settings 

To better investigate the influence of conjuncts order at a conjunctive word 
equations, we fixed the branch order for all inference rules. Additionally, we 
fixed the inference rule to the prefix version, meaning it always simplifies the 
word equation starting from the leftmost term. 

Benchmarks were split uniformly into training, validation, and test sets, fol-
lowing standard deep-learning practice. We save the model from the epoch with 
the highest validation accuracy.
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Table 1. Number of problems solved by different solvers and having extracted MUS. 
The row Other solvers shows the number of solved problem in total by Z3, Z3-Noodler, 
cvc5, and  Ostrich where . , . ×, and  .∞ denotes SAT, UNSAT, and UKN respectively. 
The row DragonLi using MUS is the number of problems solved by DragonLi when 
using MUS to rank word equations in the first iteration. 

Type Linear Non-linear 
Bench A1 A2 B C 
Total 60000 60000 60000 60000 

DragonLi 
Solved ∞ Solved ∞ Solved ∞ Solved ∞ 
58141 1859 50610 9390 52056 7944 31 59969 

Other 
solvers 

× × × × 
181 1678 667 4167 640 7304 383 58259 

Have MUS 909 1024 2996 15875 
DragonLi 

using MUS 
518 594 607 0 

All training records and corresponding hyperparameters, such as a hidden 
layer size of 128 for all neural networks and number of message passing rounds 
are available in our repository [ 8]. For example, the experimental results for 
Benchmark A and Task 2 can be found in [ 1]. 

Each problem in the benchmarks is evaluated on a computer equipped with 
two Intel Xeon E5 2630 v4 at 2.20 GHz/core and 128GB memory. The GNNs are 
trained on NVIDIA A100 GPUs. We measured the number of solved problems 
and the average solving time (in seconds), with timeout of 300 s for each proof 
attempt. 

6.1 Comparison with Other Solvers 

Table 2 compares the results of three RankEqs options, RE1, RE2, and  RE5 
(corresponding to DragonLi, Random-DragonLi, and GNN-DragonLi), against five 
solvers: Z3 [ 35], Z3-Noodler [ 19], cvc5 [ 14], Ostrich [ 18], and Woopje [ 20]. 

The primary metric is the number of solved problems. In Benchmark A1, 
GNN-DragonLi achieves the best performance for both SAT and UNSAT prob-
lems. For Benchmark A2, GNN-DragonLi solves the most problems overall (895 
problems solved), despite not being the best in either category individually. 
GNN-DragonLi outperforms both DragonLi and Random-DragonLi, showing the 
effectiveness of data-driven heuristics over fixed and random heuristics. 

As problem non-linearity increases (in Benchmark B), some solvers outper-
form all DragonLi options. For highly non-linear problems (Benchmark C), Drag-
onLi solves almost no problems, regardless of the options. This is an effect entirely 
orthogonal to the ranking problem, however: for non-linear equations, substitut-
ing variables that appear multiple times can increase equation length, resulting 
in mostly infinite branches in the search tree. It then becomes more important 
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Table 2. Number of problems, average solving time, and average split counts for 
solvers across four benchmarks. The GNN model used in this table is trained on Task 2. 
Columns “UNI”, “CS”, and “CU” indicate uniquely solved, common SAT, and common 
UNSAT problems, respectively. The “-” denotes unavailable data. Each benchmark 
consists of 1000 problems. 

Bench Solver 
Number of solved problems 

Average solving time 
(split number) 

SAT UNSAT UNI CS CU SAT UNSAT CS CU 

A1 

DragonLi 24 955 0 

13 678 

5.6 
(244.8) 

6.5 
(1085.3) 

5.0 
(94.4) 

5.7 
(126.3) 

Random-

DragonLi 
22 944 0 

5.6 
(198.8) 

6.3 
(932.6) 

5.6 
(137.6) 

5.7 
(180.5) 

GNN-

DragonLi 
24 961 0 

6.1 
(164.7) 

7.5 
(1974.8) 

6.1 
(96.4) 

6.3 
(60.5) 

cvc5 24 952 1 0.5 0.6 0.1 0.3 
Z3 17 960 0 8.7 0.4 1.1 0.1 

Z3-Noodler 22 939 2 5.7 0.3 4.8 0.1 
Ostrich 17 931 0 15.0 5.5 8.0 4.7 
Woorpje 23 744 0 3.0 12.5 0.1 12.2 

A2 

DragonLi 59 824 0 

3 0 

8.5 
(4233.4) 

11.8 
(1231.3) 

4.7 
(27.3)

-

Random-

DragonLi 
44 806 1 

24.7 
(29779.6) 

6.2 
(210.9) 

4.6 
(27.3)

-

GNN-

DragonLi 
59 836 4 

8.4 
(1330.6) 

11.6 
(1074.1) 

5.9 
(27.3)

-

cvc5 67 142 15 0.6 56.0 0.1 -

Z3 8 870 10 1.1 0.6 0.1 -

Z3-Noodler 22 7 1 15.4 3.8 0.4 -

Ostrich 13 18 2 24.8 38.8 8.6 -

Woorpje 0 0 0 - - - - - -

B 

DragonLi 11 805 0 

4 294 

4.9 
(62.5) 

5.2 
(81.5) 

4.9 
(29.2) 

5.3 
(82.4) 

Random-

DragonLi 
10 894 0 

5.0 
(58.7) 

5.8 
(295.2) 

5.0 
(27.25) 

5.2 
(73.1) 

GNN-

DragonLi 
11 821 0 

6.5 
(65.1) 

6.8 
(70.0) 

6.5 
(28.25) 

6.8 
(60.2) 

cvc5 12 915 0 0.1 0.6 0.1 0.7 
Z3 11 859 3 0.1 0.2 0.1 0.1 

Z3-Noodler 24 911 1 4.9 0.4 1.3 0.4 
Ostrich 12 917 2 6.9 3.7 3.3 4.2 
Woorpje 19 330 1 29.5 6.0 0.2 5.0 

C 

DragonLi 2 0 0 - -
5.1 

(85.5)
- - -

Random-

DragonLi 
2 0 0 - -

5.0 
(85.5)

- - -

GNN-

DragonLi
- - - - - - - - -

cvc5 0 909 17 -

1

- 46.9 - 17.3 
Z3 1 821 12 1 0.8 1.7 0.8 0.1 

Z3-Noodler 7 657 4 1 0.2 94.1 0.1 1.0 
Ostrich 0 61 0 - - 77.2 - 27.1 
Woorpje 3 62 0 1 65.0 28.4 0.2 223.1 

to implement additional criteria to detect unsatisfiable equations, for instance 
in terms of word length or letter count (e.g., [ 30]), which are present in other 
solvers. DragonLi deliberately does not include such optimizations, as we aim at 
investigating the ranking problem in a controlled setting. 

For commonly solved problems, the average solving time provides sufficient 
data only for Benchmarks A1 and B (678 and 294 problems, respectively). In 
these cases, DragonLi shows no time advantage, partly due to its implementation 
in Python. Re-implementing the algorithm in a more efficient language, such as 
Rust [ 9], can yield over a 100x speedup for single word equation problems. 
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We also measure the average number of splits in solved problems to evaluate 
ranking efficiency. GNN-DragonLi demonstrates fewer average splits compared 
to other options, indicating higher problem-solving efficiency in Benchmarks A1 
and B. Our results can be summarized as follows: 

1. For linear problems, all DragonLi ranking options perform competitively, with 
GNN-DragonLi solving the highest number of problems. 

2. For moderately non-linear problems (Benchmark B), DragonLi shows mod-
erate performance, but the ranking heuristic offers limited benefits to GNN-
DragonLi, leading to reduced performance compared to other options. 

3. For highly non-linear problems (Benchmark C), DragonLi fails to solve most 
problems due to limitations in its calculus. 

4. The current implementation of DragonLi offers no time advantage for com-
monly solved problems, though significant improvements are achievable by 
reimplementation. 

Increasing training data for Benchmark A2 from 20,000 to 60,000 allowed 
GNN-DragonLi to solve additional problems, suggesting that larger training sets 
may enhance performance. An ablation study on alternative RankEqs options 
is provided as an appendix in the repository [ 2]. All benchmarks, evaluation 
results, and implementation details, including hyperparameters, are available in 
our GitHub repository [ 8]. 

7 Related Work 

Axel Thue [ 39] laid the theoretical foundation of word equations by studying 
the combinatorics of words and sequences, providing an initial understanding of 
repetitive patterns. The first deterministic algorithm to solve word equations was 
proposed by Makanin [ 33], but the complexity is non-elementary. Plandowski [ 38] 
designed an algorithm that reduces the complexity to PSPACE by using a form 
of run-length encoding to represent strings and variables more compactly during 
the solving process. Artur Jeż [  28] proposed a nondeterministic algorithm that 
runs in .O(n log n) space. Closer to our approach, recent research has focused on 
improving the practical efficiency of solving word equations. Perrin and Pin [ 37] 
offered an automata-based technique that represents equations in terms of states 
and transitions. This allows the automata to capture the behavior of strings sat-
isfying the equation. Markus et al. [ 22] explored graph representations and graph 
traversal methods to optimize the solving process for word equations, while Day 
et al. [ 20] reformulated the word equation problem as a reachability problem 
for nondeterministic finite automata, then encoded it as a propositional satis-
fiability problem that can be handled by SAT solvers. Day et al. [ 21] proposed  
a transformation system that extends the Nielsen transformation [ 31] to work  
with linear length constraints. 

Deep learning [ 24] has been integrated with various formal verification tech-
niques, such as scheduling SMT solvers [ 26], loop invariant reasoning [ 42,43], 
and guiding premise selection for Automated Theorem Provers (ATPs) [ 27,45]. 
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Closely related work in learning from Minimal Unsatisfiable Subsets (MUSes) 
includes NeuroSAT [ 40,41], which utilizes GNNs to predict the probability 
of variables appearing in unsat cores, guiding variable branching decisions 
for Conflict-Driven Clause Learning (CDCL) [ 34]. Additionally, some recent 
works [ 12,32] explore learning MUSes to guide CHC [ 25] solvers. 

8 Conclusion and Future Work 

In this work, we extend a Nielsen transformation based algorithm [ 11] to support  
the ranking of conjunctive word equations. We adapt a multi-classification task 
to handle a variable number of inputs in three different ways in the ranking task. 
The model is trained using MUSes to guide the algorithm in solving UNSAT 
problems more efficiently. To capture global information in conjunctive word 
equations, we propose a novel graph representation for word equations. Addi-
tionally, we explore various options for integrating the trained model into the 
algorithms. Experimental results show that, for linear benchmarks, our frame-
work outperforms the listed leading solvers. However, for non-linear problems, 
its advantages diminish due to the inherent limitations of the inference rules. Our 
framework not only offers a method for ranking word equations but also provides 
a generalized approach that can be extended to a wide range of formula ranking 
problems which plays a critical role is symbolic reasoning. 

As future work, we aim to optimize GNN overhead, integrate GNN guidance 
for both branching and ranking, and extend the solver to support length con-
straints and regular expressions for greater real-world applicability. Our frame-
work can be generalized to handle more decision processes in symbolic methods 
that take symbolic expressions as input and output a decision choices. 
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26. Hůla, J., Mojž́ı̌sek, D., Janota, M.: Graph neural networks for scheduling of SMT 
solvers. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intel-
ligence (ICTAI), pp. 447–451 (2021). https://doi.org/10.1109/ICTAI52525.2021. 
00072 
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