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Bugs? 1 s

Tests Formal Methods
e Cheaper e Expensive
e Faster e Time-consuming
e Generate partial use cases e Use rigorous mathematical
and check if the system is techniques to ensure that a
working as expected system is working as expected
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Proofs

Automated Theorem Proving

Interactive Theorem Proving

e Click-and-prove software )
. e Proof assistants
e Searching for a proof all by i
e Guide humans towards proof
themselves .
e Proof are machine-checkable
e QOutput a statement or a »
. and certified
proof-like trace

Trust Scale
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Big Picture
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Yet Another Prover

How to...

Perform an efficient and fair tableau-based proof-search procedure?

Prove the completeness of the procedure?
e Make it suitable to reason on larger contexts?

Provide a machine-checkable proof while using advanced proof-
search strategies?
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Logic

What is Logic?

e Study of correct reasoning

e Mathematical representation of the world
e Truth value of a statement

First-Order Logic (FOL)
e Expressivity: elements and properties about them
e Efficient reasoning methods
e Semi-decidable
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Method of Analytic Tableaux

— Origin & Strengths
Principle
e Beth and Hintikka

e Extended by Smullyan and
Fitting
e Unaltered original formula

e A set of axioms and one conjecture
e Refutation
e Syntactic rules: ®,«,d, 3,7

e Close all the branches O

EGOEAOTYE0) N
P(a) ~(Pla) A PO) "

“Pla) DO
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Tableau-Based Proof-Search Procedure

Rules
Tableaux in AR

e ©: Closure rule

e «, 3: Expands the tree
e 7: Free variables

e §: Skolemization

e Free variables
e Substitutions

Human(Socrates), m Human(Socrates)
©
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Tableau-Based Proof-Search Procedure

Rules
e ©: Closure rule Tableaux in AR
e «, 3: Expands the tree e Free variables
e : Free variables e Substitutions
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V.= Human(z)
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Tableau-Based Proof-Search Procedure

Rules
Tableaux in AR

e ©: Closure rule

e «, [3: Expands the tree
e : Free variables

e 0: Skolemization

e Free variables
e Substitutions

Human(Socrates)
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-~ Human(X)
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Tableau-Based Proof-Search Procedure

Rules
e ©: Closure rule LIl (R
e «,3: Expands the tree e Free variables
e 7: Free variables e Substitutions

e §: Skolemization

Human(Socrates)
Va.mHuman(x)

—Human(Socrates)
o ={X — Socrates}
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Tableau-Based Proof-Search Procedure

Rules

e ©: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e ~: Free variables e Substitutions
e §: Skolemization

=(3z. P(z) = (P(a) A P(b)))
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Tableau-Based Proof-Search Procedure

Rules

e (: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e : Free variables e Substitutions

e §: Skolemization

8 PlE) = (H@ AP
~(PX) = (PO APB)
P(X),=(P(a) A P(b))
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Tableau-Based Proof-Search Procedure

Rules

e (»: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e : Free variables e Substitutions

e §: Skolemization

—(3z. P(x

~(P(X) = (P(a) A P(D)))
P(X),=(P(a) A P(b

-P(a) —P(b)
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Tableau-Based Proof-Search Procedure

Rules

e : Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e : Free variables e Substitutions

e §: Skolemization

—(Jz. P(x

~(P(X) = (P(a) A P(D)))
P(X),

—P(a) —P(b)
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Tableau-Based Proof-Search Procedure
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Tableau-Based Proof-Search Procedure

Rules

e (»: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e : Free variables e Substitutions

e §: Skolemization

=(3z. P(xz) = (P(a) A P(b)))
~(P(X) = (P(a) A P(D)))
P(X),~(P(a) A P(b))
—-P(a) -P(b)
c={X—a} 7

=

B-n
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Tableau-Based Proof-Search Procedure

Rules

e : Closure rule Tableaux in AR

e «, [3: Expands the tree e Free variables
e 7: Free variables e Substitutions

e J: Skolemization

—(3z. P(z) = (P(a) A P(b))) -
—~(P(a) = (P(a) A P(b))) o
P(a), =(P(a) A P(b)) B

—P(a) | —P(b)
c={Xw—a} 7
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Tableau-Based Proof-Search Procedure

Rules

e ©: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e 7: Free variables e Substitutions
e 0: Skolemization

—(3z. P(z) = (P(a) A P(b)))

~(Pla) = (P@APG))
Pl) (P APO)
~Pla) Og —PO) - W

~(P(X2) = (P(a) A P(D)))
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Tableau-Based Proof-Search Procedure

Rules

e ©: Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e 7: Free variables e Substitutions
e §: Skolemization

(Pl = (P@APG))
P(a), ~(P(a) A P(8)) ;
R ~P(p) " o

~(P(X2) = (P(a) A P(b)))
P(X3), ~(P(a) A P(b))

=
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Tableau-Based Proof-Search Procedure

Rules

e : Closure rule Tableaux in AR

e «, 3: Expands the tree e Free variables
e 7: Free variables e Substitutions
e §: Skolemization

(Pl = (P@APG))
P(a) ~(P@ A PE)
“Pla) -Pe)
o={Xral 7 (PG = (PWAPG)) . _
P2 ~(P@APB)
o= {Xy— b} 7
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Tableau-Based Proof-Search Procedure

Rules

e (»: Closure rule Tableaux in AR

e «, 3: Expands the tree
e : Free variables
e §: Skolemization

e Free variables
e Substitutions

—~(3z. P(z) = (P(a) A P(b))) .
—(P(a) = (P(a) A P(b)) o
P(a),=(P(a) A P(b)) 5
—P(a) -P®) "
W

s Xoa ° S(PO) = (P(a) APR)
P(b), ~(P(a) A P(b))
g = {XQ —> b}

=

o
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2. Fairness Management in Tableau
Proof-Search Procedure: a Concurrent
Approach

2.1. Fairness Challenges in Tableaux
2.2. A Concurrent Proof-Search Procedure
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Fairness in Tableaux

Certification

Fairness

A proof-search procedure is fair if and only if each formula on which a

non-vy-rule can be applied occurs in a subsequent step, and every ~-rules
will be computed an arbitrary number of times.

“At the present time, no strongly complete, destructive tableau proof
procedure is known that works well in practice.”

— Reiner Hahnle, Handbook of Automated Reasoning Vol.1, 2001
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Fariness Management

Unfairness Sources

e The selection of a branch B (select branch)

e Determining whether B should be closed or expanded (select mode)

e If B is to be closed, the choice of a pair of complementary literals
and thus a closing substitution (select pair)

e If B is to be expanded, the selection of a formula to which an
expansion rule is applied (select formula)

State-of-the-Art Answers & Heuristics

e Limit the number of application of ~-rules
e |terative deepening
e Rules ordering (® < a < <8 <7)
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Select Pair and Select Mode
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Select Pair and Select Mode
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Select Pair and Select Mode

ﬁP(a)
=Q(b)
=5(c)
Vo (P(@)V Q@) AVy. S(x)
P(X)V Q(X),Vy. S(X) .
P(X),Vy. S(X) Q(X),vy. S(X) "7
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Select Pair and Select Mode
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Select Pair and Select Mode

P(X),Vy. S(X) Q(X),Vy. 5(X)
c={X—a 7
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Select Pair and Select Mode

—P(a)
—Q(b)
—5(c)
V. (P(z) V Q(z)) AVy. S(x)
P(a) v Q(a),Vy. S(a)
P(a),Vy. S(a) Q(a),Vy. S(a)
oc={X+ra}

W

Be
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Select Pair and Select Mode

—P(a)
Q)
-5(¢)
V. (P(z) V Q(z)) AVy. S(x)
Pa) v Q(a),Vy. S(a) 3
P(a),Vy. S(a) - Q(a),¥y. S(a) -

oc={X+ra} 7 S(a) i

W
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Select Pair and Select Mode

—P(a)
—Q(b)
—5(c)
V. (P(z) V Q(x)) A Vy. S(x) o
P(a) vV Q(a),Vy. S(a) 5
P(a),Vy. S(a) - Q(a),Vy. S(a) "%
c={Xw—a} 7 S(a)

P(XQ) V Q(XQ),V,’U S(X2) "
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Select Pair and Select Mode

—P(a)
—Q(b)
=S5(c)
Ve. (P(z) V Q(z)) A Vy. S(z)

PV Q) Yy 5@ ;
PR 5@ Q@ 5w
o={X—a} ° S(a)

P(X2)V Q(X2), Yy 5(X2)

P(Xo).Vy. S(%)  Q(Xa), vy S(%a)
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Select Pair and Select Mode

—P(a)
—Q(b)

=5(c)
Vz. (P(z) V Q(z)) A Vy. S(z)

P(a)VO(a),Vy. S@ " 5
c={X—a} * S(a)

P(X2)V QUX) Yy 5(Xz)

P(X3),Vy. S(X2) Q(X2), Vy. S(X2)

By
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Select Pair and Select Mode
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Select Pair and Select Mode
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Select Pair and Select Mode

2)) A V. S(z)
P( ) Q(X),Vy. S(X)
P(X),Vy. S(X) Q( ), Vy. S(X) "7

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic 13 December 2023 11 /37



Preliminary Notions A Fair Proof-Search Procedure Goéland Certification

Select Pair and Select Mode

) A
P( ) Q(X),Vy. (X)
P(X),¥y. S(X) Q(X),Vy. S(X)
S(X) !
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Select Pair and Select Mode

) A
P( ) Q(X),Vy. S(X)
P00V 500 QU0 v ()
S(X)
oc={Xrc}

o
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Select Pair and Select Mode
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Select Pair and Select Mode

—P(a)
Q)
=S5(c)
Ve. (P(z) V Q(x)) AVy. S(x) .
P(c) vV Q(c),Vy. S(c) 5
P(c), Y. 5() Q) vy 5@ _~
50 50)

o
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Select Pair and Select Mode

—P(a)
—Q(b)
—5(c)
Va. (P(x) V Q(x)) AVy. S(x) "
P(c) vV Q(c),Vy. S(c) 5
P(c),Vy. 5(c) Q(c),Vy- S(c) Vj
S(c) S(c)
c={Xr~c} 7 o
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Exploring Branches in Parallel?

Approach
e Each branch searches for a local solution
e Management of multiple solutions with successive attempts and
backtracking
e Forbid previously tried solutions
e [terative deepening, limit of «-rule and rules ordering

New Challenges
e Free variable dependency
e Communication between branches
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Procedures Interactions

start

proofSearch
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Procedures Interactions

No more
applicable rules

Local substitution

found

a-, 0-
and y-rules

proofSearch
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Procedures Interactions

No more Local substitution
applicable rules found

Create Create

a-, 0-
and v-rules

proofSearch

waitForChildren
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Procedures Interactions

No more

Local substitution
applicable rules

found

4 o l
-, o=
proofSearch @
and ~v-rules
Global

substitution
found

waitForChildren
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Procedures Interactions

No more

Local substitution
applicable rules

found

y |

- o-

proofSearch @

and ~v-rules

i Global

Open child and —
backtracking: substitution

- ¢ found

Forbid
substitutions

All children ended

waitForChildren

Open child and backtracking

waitForParent

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic 13 December 2023 13 /37



Preliminary Notions A Fair Proof-Search Procedure Goéland Certification

Procedures Interactions

No more

Local substitution
applicable rules

found
kill kill

-, -
proofSearch “
and y-rules
o i and il Global
Pben Et' ;” . I o = substitution
no backtracking: found

Forbid

o [-rule Process
substitutions

end

Kilkmessage Kill messa

waitForChildren waitForParent
Receives new substitution

Open child and backtracking Receives

All children ended

substitution sent
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Solving Fairness Issues with Concurrency
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Solving Fairness Issues with Concurrency

) A
P( ) Q(X), vy ( )
P(X),Vy. §(X) Q( ), Vy. S(X)
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Solving Fairness Issues with Concurrency

Vy. S(x)

) A W
P(X) ( ), Vy. S(X) 5
P(X).vy- S(X) QX),¥y. S(X) -
@ 7 ® 7
o=1{X+a} o={X b}
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Solving Fairness Issues with Concurrency

-P

-

(a)
Q(b)
—5(c)
V. (P(x) V Q(x)) AVy. S(z)
P(X)\/Q( ) VY- S(X)
y. S(

y A\ Vys Vij’

g

W

cr—{Xr—>a} a—{Xr—>b}
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Solving Fairness Issues with Concurrency
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Solving Fairness Issues with Concurrency

(a)
—Q(b)
—5(c)
Va. (P )VQ(m)) vy. S( )
P(X) vRX),Vy. S(X
P(a),Vy. S(a ) 5 Q(a), VU S(a)
@ [ea
Closed

W

Be
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Solving Fairness Issues with Concurrency
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Solving Fairness Issues with Concurrency
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Solving Fairness Issues with Concurrency

W
Be

Q

oc={X b} oc={X b}

—~

b),Vy. S(b)
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Solving Fairness Issues with Concurrency

V. (P(x >v@<¢> Ay S@@)
P(X) V Q(X),Vy. S(X) 5
P(b),Vy. S(b) Q).vy. S(b) " °
@ @O’
Closed
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Solving Fairness Issues with Concurrency

-P(

—Q(
-S5(c)

V. (P(z) V Q(z)) AVy. S(z) -

P(X)VQ(X),Vy. S(X) 5

P(b),Vy. S(b) Qb),Vy. S(b) "7

A AR A A W
S(0) W o

a)
b)

)
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Solving Fairness Issues with Concurrency

~P(a)
Q)
=S(e)
Vo (P(@) V Q@) AVy. S@)
P(X) v Q(X),Vy. S(X) 5
P()vy. SO Q). SO) " T
S b)/ ® 7
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Solving Fairness Issues with Concurrency

>
< > X, 5%

P(X),Vy. S( X)/ \Q (X),Vy. S(X)

Be

X & {a,b} X & {a,b}
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Solving Fairness Issues with Concurrency
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Solving Fairness Issues with Concurrency

) A
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P(X),vy. S(X ), ¥y. SX)
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Solving Fairness Issues with Concurrency

~P(a)
—Q(b)
—5(¢)
V. (P(z) V Q(z)) AVy. S(x) "
P(c) vV Q(c),Vy. S(c) 5
P(c), Yy 5(c) Q(e),vy- 5(0) 7
S 59
© 77 © 7
oc={Xr—c} oc={Xwrc}
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Contributions

e A Concurrent tableau-based proof-search procedure

e Concurrent exploration of branches

Eager closure

Backtrack and forbidden substitutions

e Tackle fairness challenges

Completeness proof of the procedure

Implemented into a tool: Goéland
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3. Goéland: Implementation, Experiments,
and Analysis

3.1. The Goéland Automated Theorem Prover
3.2. Theory Reasoning
3.3. Experiments and Analysis
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Goéland Tool

Functionnalities

e Concurrent proof-search procedure

Equality reasoning

Deduction modulo theory (+ polarized)
Polymorphic types

e Alternative modes: incomplete, interactive, ...
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Goéland Tool

Implementation
e 30 000 lines of code
e Go programming language

e Designed for concurrency
e Goroutines: N:M lightweight threads

’ OS thread ‘ ’ OS thread ‘

’GOHGOHGO‘ ’GO"GO"GO"GO‘
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Theory Reasoning

Motivation and Challenges

e Reason within specific contexts (arithmetic, industrial problems, ...)
e Deal with a large number of axioms
e Handle multiple theories

Background Reasoners
e Equality
e Deduction modulo theory (DMT)
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Deduction Modulo Theory

Principle

e Turns axiom into rewrite rules
e Triggers only relevant axioms
e Produces shorter proof

e Not limited to one theory

Main Heuristic Polarized DMT
(VZ.) A < F where: (VZ.) A = F where:
e A is an atomic formula e A is an atomic formula
e F'is a non-atomic formula e Fis a non-atomic formula

Axiom: Vz. P(x) < Vy. Q(z,y) A S(x,y)
Rule: P(X) — Vy. Q(X,y) A S(X,y)
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Protocol of the Experiments

Thousand of Problems for Theorem Provers (TPTP) library (v8.1.2)
Syntactic (SYN) and set theory (SET) categories
First-order logic (FOL)

Goéland and its variants, Zenon (+ modulo), Princess, Vampire and
E

300 seconds of timeout

Intel Xeon E5-2680 v4 2.4GHz 2x14-core processor with 128GB
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Goéland Variants over SYN and SET

SYN (288 problems) | SET (464 problems)
Goéland 209 (1.25) 124 (18.6s)
Goéland+EQ 213 (0.3s) 101 (15.6 s)
Goéland+DMT 209 (1.35) 217 (5.95)
(0.55)
(0.35)

Goéland+DMT+EQ | 213 192 (10.25)

Goéland+DMT 202 164 (1.55)
+Polarized
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All Provers on FOF

FOF (5396 problems)
Goéland 613 (10 482 s — 17.1s)
Goéland+DMT 770 (6 935s —9's)
Goéland+DMT+EQ 801 (10 060 s — 12.5s)
Zenon 1382 (9026 s—6.55)
Zenon Modulo 1389 (10 028 s — 7.2 s)
Princess 1621 (23 200 s — 14.3 s)
Vampire 3 342 (42873 s — 128 s)
E 3939 (39638 s — 10.1s)
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Scale-Up Experimental Results

SYN (207 problems) SET (113 problems)
2 15s 20 s (+4)
4 0.6 s 15 s (+5)
8 04s 12 s (+8)
16 0.8s 8.7 s (+10)
28 0.3s (+2) 8.7 s (+11)
Table 1: Scale-up experimental results of Goéland.
SYN (207 problems) SET (208 problems)
2 14s(+1) 6.1 s (+5)
4 1.3s 5.3s (+ 8)
8 1.1s 4.7s (+7)
16 0.6 s(+1) 4.2 s (+9)
28 0.4s(+2) 3.1s(+9)

Table 2: Scale-up experimental results of Goéland+DMT.

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic
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Analysis

e Promising results

Less problems solved than other ATP

Scaling issue

e Memory management

Equality reasoning performances
Good results with DMT
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4. Toward Certification: an Output for
Checkable Proofs

4.1. Skolemization and Translation
4.2. A Deskolemization Strategy
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Advanced Skolemization Strategies

Motivations

e Shorter proofs
e Faster proof search

Inner Skolemization (5" -rule)
e Extension of J-rule
e Uses only the free variables of the formula

Pre-Inner Skolemization (61" -rule)

e Extension of ' -rule
e Reuses the same Skolem symbol if they come from a-equivalent
formulas

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic 13 December 2023 25 /37



Preliminary Notions A Fair Proof-Search Procedure Goéland Certification

—(3z. D(x) = Yy D(y))
~(D(X) = vy D(y))

DX),~(% D) ;= =(Ez.D@)=VyDw)
~D(f(X)) ) - ~(D(X) = vy D@y))
~(D(Xa) = Vy D@)) |, D(X),~(Yy D(y)) o
D(X3), ~¥y D(y) Dl
o={Xs f(X)} ° c={Xrc} °
(a) Outer Skolemization tableau. (b) Inner Skolemization tableau.
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Translation to Machine-Checkable Proofs

Gentzen-Schiitte Calculus (GS3)
e Equivalent to tableaux
e Easily translatable to proof assistants
e Only supports outer skolemization

~(3z. D(z) = Vy D(y)) . %
~(D(X)=Vy D(y)) -.,0D(d), D(¢), ~(Vy D(y)) - .
D(X),~(%y D)) . = _...~(D(¢) = Yy D(y)) - .
=D(f(X)) iv =(3z. D(z) = Yy D(y)),...,~D(c) F o
~(D(X2) =Y D) .., D(0), 5%y D)) -
D(X3), -y D(y) . 2(D() =Wy D)~
o={X% (X)) ° ~(e. D(z) = Vy D(y)) -
(a) Outer Skolemization tableau proof. (b) Equivalent GS3.
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Translation in Inner Skolemization

~(3z. D(z) = Vy D(y))

~DX) =Yy D) D@ (% D). SD@ -
D(X),~(Vy D(y) _, RGN 0
-D(c) v ~ (D) = Vy Dy)) -
c={Xwc} Do —(3z. D(z) = Yy D(y)) -
(a) Inner Skolemization tableau proof. (b) Incorrect equivalent GS3.
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A Deskolemization Strat

Idea

Perform all the Skolemization steps before the other rules, so the Skolem
symbol is necessarily fresh.

Key Notions
e Formulas that depend on a Skolem symbol
e Formulas that descend from a Skolem symbol
e A formula F' needs to be processed before another formula G iff G
makes use of a Skolem symbol generated by F'

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic 13 December 2023 29 /37



Preliminary Notions A Fair Proof-Search Procedure Goéland Certification

—(3z. D(x) = Yy D(y))
~(D(X) = Vy D(y))
D(X), ~(Vy D(y))
-D(c) -
c={X—c} °

Y-3
=

@3
+
oy
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—(3z. D(z) = Yy D(y))
~(D(X) = Vy D(y))
D(X), ~(Vy D(y))

-D(c) -
c={X—c} °

-=
+
oy

=(3z. D(z) = Vy D(y)) -
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—(3z. D(z) = Vy D(y))

~(DX) =¥y D(y) '~
D(X)7 ﬂ(Vy D(y)) st
-V

-D(c)
o={Xw—c} 7

~(3z. D(z) = Vy D(y)), ~(D(c) = Vy D(y))
=(3x. D(z) = Yy D(y))
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—(3z. D(z) = Yy D(y))

~DX) >V D)
D(X),~(% D)) 5,
-V

~D(c)
o={Xrc} O

—(3z. D(z) = Yy D(y)), ~(D(c) = Yy D(y))
—(3z. D(z) = Vy D(y))
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—(3z. D(z) = Yy D(y))

~(D(X) =y D)
D(X),~(Yy D(y)) 6+ﬁ
-V

~D(c)
o={Xr—c} O

—(3z. D(z) = Vy D(y)),~(D(c) = Yy D(y)), D(e), ~(Yy D(y)) -
—(3z. D(z) = Vy D(y)), ~(D(c) = Vy D(y)) -
—(3z. D(z) = Vy D(y))

=

-3
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—(3x. D(x) = Yy D(y))
~(D(X) =Yy D)
D(X),~(Vy D(y)) _,

~D(c) v
oc={Xwrc} 7

=(3z. D(x) = Vy D(y)), ~(D(c) = Yy D(y)), D(c), =(Yy D(y)) -
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—(3z. D(x) = Yy D(y))
~(D(X) = Vy D(y))
D(X),~(Yy D(y)) .,
—D(e) 5 v
c={Xr—c¢ 7

~(3z. D(x) = Vy D(y)), 2(D(¢) = Vy D(y)), D(c), ~(vy D(y)) F
~(3z. D(z) = Yy D(y)), 2(D(e) = Vy D(y)) -
=(3z. D(z) = Yy D(y))
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—(3z. D(x) = Yy D(y))
~(D(X) = Vy D(y))
D(X),~(Yy D(y)) .,
—D(e) 5 v
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=(3z. D(z) = Vy D(y)), ~(Vy D(y)) -
=(3z. D(z) = Vy D(y)), ~(D(c) = Vy D(y)). D(c), ~(Vy D(y))
=(3z. D(z) = Vy D(y)), ~(D(c) = Vy D(y))
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W x 2
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—(3z. D(z) = Vy D(y))
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Implementation

Implementation

§, 8% and 6+ Skolemization strategies
GS3 proofs
Deskolemization algorithms

e Coq & Lambdapi outputs

Evaluation Protocol
e Same setup as previous tests
e 3 Skolemization strategies + DMT
e Number of problems solved
e Size of the proof (number of branches)
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Problems | Percentage | Avg. Size | Max. Size
Proved Certified Increase Increase
Goéland 261 100 % 0% -
Goéland+35T 272 100 % 8.1% 5.3
Goéland+6+" 274 100 % 10.6 % 10.3
Goéland+DMT 363 100 % 0% -
Goéland+DMT+46" 375 100 % 4.5 % 3.9
Goéland+DMT+45+" 377 100 % 7.4 % 5.2

Julie Cailler Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order Logic
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Contributions

e An optimization of the deskolemization algorithm for 61

A deskolemization algorithm for 6+

Soundness proof for both translations
e Output of GS3 proof into Coq and Lambdapi

e Promising results

100% of the proofs are certified

Far below the theoretical bound
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Conclusion
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Contributions

Fairness in Tableau-Based Proof Search

e Fairness between branches managed by concurrency
e Completeness of the procedure

Theory Reasoning in Tableaux

e Implementation of two background reasoners
e Study of parallelization points and interaction with the proof search

Proof Certification

e A sound deskolemization algorithm
e Output of the proofs into Coq & Lambdapi
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Preliminary Notions A Fair Proof-Search Procedure Goéland Certification

Perspectives

Fairness in Tableau-Based Proof Search
e Improvement of the performances of Goéland
e Heuristics in formula computation order, closure management
e Simulate “intuition” with learning methods

Theory Reasoning in Tableaux

e Improvements of DMT (term rewriting, narrowing, manually de-
signed rewrite rules)
e More experiments on polymorphic problems

Proof Certification

e Reduce the number of branches by the use of lemmas
e Framework for verification of tableau proofs
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First-Order Logic

Conventions

e Constant symbols: a, b, ¢

e Function symbols: f, f’

e Bound and free variables: z, y, X, X5, Y
e Predicate symbols: P, @, S

e Connectives: =, A\, V, =, <

e Quantifiers: 3,V

e Socrates e All humans are mortals
e Human(z) e Socrates is a human
e Mortal(x) e Then Socrates is mortal

(Vx. Human(xz) = Mortal(xz)) A Human(Socrates) = Mortal(Socrates)



Reasoning Methods in FOL

Resolution Tableaux

e Breaks the initial formula into o Works with the unaltered
clauses original formula

e Derivation step and satura- o Reduces the goal into sub-
tion goals

o More efficient o Better interoperability

CNF : {-A},{AV A}, {~BV A}

A (A= B)=A) = A) N
By (A= B)= A, A 6ﬁ
~A-B T ©
{-BV A} o
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Reasoning Methods in FOL

Resolution Tableaux

e Breaks the initial formula into o Works with the unaltered
clauses original formula

e Derivation step and satura- o Reduces the goal into sub-
tion goals

o More efficient o Better interoperability

CNF : {-A},{AV A}, {~BV A}

=) { (A= B)=A) = A) N
(AVA) (4 (A= B)= A,-A . e
-(A= B) A5
A-B T ©



Select Branch

P@AP@ L
P@),~P(@) =~ ©
©

(a) Proof of (P(a) A —~P(a)) V L.

(b) Incompleteness caused by an unfair
select branch.



Select Formula

P(a) A ~P(a) V‘ZZ ?)(j)( )
_ V=R %
P@).~P(a) QX 5

©
(b) Incompleteness caused by an unfair
(a) Proof of P(a) A —~P(a),Vz Q(X). select formula.



Select Pair (Right Branch First)




Select Pair (Right Branch First)

P(a)

—P(b)
V. P(z) < (Vy P(y))
P(X) < (Vy P(y))

=



Select Pair (Right Branch First)

P(a)
-P(b)
Va. P(z) & (Vy P(y))
P(X) < (Vy P(y))
P(X),Vy P(y) —P(X),~(Vy P(y))

Be



Select Pair (Right Branch First)

P(a)
-P(b)
Va. P(z) & (Vy P(y))
P(X) & (Vy P(y))
P(X),vy P(y)  =P(X),~(Vy P(y))
oc={Xr—a}

fe

[oa




Select Pair (Right Branch First)

P(a)
—P(b)
Va. P(z) < (Vy P(y))
P(a) < (Vy P(y))
P(a),Vy P(y) —P(a),~(Vy P(y))
oc={X —a}

Be

g




Select Pair (Right Branch First)

P(a)
—P(b)
V. P(z) & (Vy P(y))
P(a) < (Vy P(y))
P(a),Vy P(y) —P(a), ~(Vy P(y))
- PlY) v o={X+a}

Be
Og




Select Pair (Right Branch First)

P(a)
—-P(b)
Va. P(z) & (Vy P(y))
P(a) & (Yy P(y))
P(a),Vy P(y) " —P(a), =(Vy P(y))
P(Y) o={X+a}
o={Y—b °

W

Be

[oa




Select Pair (Right Branch First)

P(a)
~P(b)
Va. P(z) < (Vy P(y))
P(a) & (Vy P(y))
P(a),Vy P(y) y —P(a), =(Yy P(y))
P(b) - oc={X+ra}
c={Y—b 7

Be

o




Select Pair (Left Branch First)

P(a)
~P(b)
V. P(z) < (Vy P(y))



Select Pair (Left Branch First)

P(a)

-P(b)
Vz. P(z) & (Yy P(y))
P(X) & (Vy P(y))

=



Select Pair (Left Branch First)

P(a)
- P(b)
Va. P(z) < (Vy P(y))
P(X) & (Vy P(y))
P(X),Vy P(y) —P(X),~(Yy P(y))

Be




Select Pair (Left Branch First)

P(a)
- P(b)
Va. P(z) < (Vy P(y))
P(X) < (Vy P(y))
P(X),VYy P(y) —~P(X),~(Vy P(y))
o={Xw—b °

W
Be




Select Pair (Left Branch First)

P(a)
—P(b)
V. P(z) < (Yy P(
P(b) < (Yy P(y)
P(b),Vy P(y) =P(b),~(Vy P(y))
c={X—0b °

)

<

~—




Select Pair (Left Branch First)

P(a)
-P(b)

Vz. P(z) < (Yy P(y))

<

P(b) < (VYy P(y)

~—

P(b),Vy P(y)

Be

=P(b), =(Vy P(y))

o

o={X— b}

~P(f(b)) -



Select Pair (Left Branch First)

P(a)
~P(b)
V. P(z) < (Vy P(y))
P(b) & (Yy P(y))

P(0).vy P(5) —P(), ~(vy P) =
o={X—b} ~PU®)

P(Xz) & (Yy P(y))



Select Pair (Left Branch First)

P(a)
-P(b)
Vz. P(z) < (Yy P(y))

PO) & (W P) ;
P(b),¥y P(y) ~P(b), ~(%y P(y)) °
c={X—b ° —P(f(b)) o

P(X2) & (Vy P(y))

P(X),Vy P(y) ~P(X2), ~(%5 P@) ¢




Select Pair (Left Branch First)

P(a)
P(b)
Va. P(x) < (Vy P(y))

PO) & (g PG) ;
P(),Vy P(y) —P(b), ~(Vy P(y)) f
s=(Xmb) 7 PG
P(Xs) < (Vy P(y)) 5
P(X5), Yy P(y) —P(X3),~(Vy P(y) " °

o

U:{X2’_>b}
o' ={X2— f(b)}



Select Pair (Left Branch First)

P(a)
—-P(b)
Vz. P(z) < (Yy P(y))

PO & (W Pl) ;
P(b), %y Ply) =P(b),~(Vy P(y)) 5?
T=(Xmb) SR
P(b) < (Vy P(y)) 5
P(b), Yy P(y) —P(b),~(Vy P(y)) "~
o={Xy— b} 7

o' ={Xz = f(b)}



Select Pair (Left Branch First)

P(a)
-P(b)
Va. P(z) < (Vy P(y))
P(b) & (Vy P(y))
P(b),Vy P(y) —P(b), ~(Vy P(y))
oc={X—~b} °

W

Be

-
~P(FB)

P(b) < (Vy P(y)) 5

P(b),Vy P(y) - -P(b),~(Vy P(y)) '~

o={X;>b} ° ~P(f'(1)) -
o' ={X2 = f(b)}




Select Pair (Left Branch First)

P(a)
-P(b)
Va. P(z) < (Vy P(y))
P(b) & (Vy P(y))
P(b),Vy P(y) —P(b), ~(Vy P(y))
oc={X—~b} °

W

Be

-
~P(FB)

P(b) < (Vy P(y))
P(b),Vy P(y) —~P(b),~(Vy P(y))
o={Xo—b} -P(f'(b)) "
o' ={X2 = f(b)}

Be

d-v




Sequential and Concurrent Executions

P1 —{ write(0) }—{ read() }—>

(a) Sequential execution of two operations on a resource R by the process p;.

P1 —{ write(0) }

P2 { read() }—>

(b) Concurrent execution of two operations on a shared resource R: write(0) by p1

and read() by pa.



Parallelism and Concurrency

P2 read()

(a) Concurrent but not parallel.

P1 4{ read() (on Ry) }—»
P2 4{ read() (on Ry) }—»

(b) Parallel but not concurrent.

P1 —{ write(0) H read () }
P2 { read () H write(1) }—>

(c) Concurrent and parallel.




Interactions with the Proof-Search Procedure

Equality Reasoning
e Capture equality predicate ~
e Extract terms that have to be equals
e BSE calculus

e New closure rule: =(X ~ X)

Integration
e Triggered when a predicate or an equality is generated
e Backtrack if the chosen solution does not fit with other branches
e Parallelization if multiple rules are applicable



BSE-Calculus

Rigid E-unification Problem

A rigid E-unification problem
(E,s,t)

consists of a finite set E of equalities of the form (I = r) and two terms
s and ¢ such that r,1,s,t € 7.

Constraint

An (ordering) constraint is a (finite) set of expressions of the form s ~ ¢
or s > t where s and ¢ are terms. A substitution o is a solution to a
constraint C if and only if :

e o(s) =o(t) forall s~teC,ie., ois an unifier for s and ¢.
e o(s) > o(t) for all s =t € C, where > is an arbitrary but fixed
term reduction ordering.

e o instantiates all variables occurring in C with ground terms.



Basic Rigid Superposition Rules

Right Basic Rigid Superposition Rule

Let [ = r or r = [ be an equality of F and !’ is sub-term of s or . Thus,
the application of the right rigid basic superposition (rbrs) rule results
in one of the following, regarding the term on which it is applied:

e 5 become s/, and the constraints [ >~ r, s = ¢, | ~ " are added

to C'

e t become t[;,,,] and the constraints [ = r, ¢ = s, [ ~ I’ are added

to C

(Eu{l=r},s1t)-C

b.
(EU{l~r},spnsm,t) - CU{l=rs =t 1=V} e




Basic Rigid Superposition Rules

Left Basic Rigid Superposition Rule
Letl ~rorr~1landu~vorv~ ubetwo equalities of E. Let I’ bea
sub-term of w. Thus, the application of the left rigid basic superposition
(Ibrs) rule results in u ~ v becoming uy,,] = v and the constraints
l>=7r, u>wvandl~1 are added to C.

(EU{l%r,u%v},s,ﬂ-C
(EU{lzr,u[l/Hr] zv},s,t)-CU{l>r,u>v,l:l’}

lbrs



Example using Equality Reasoning



Example using Equality Reasoning

a=~b
arc
=P(a,b)
Va. P(c,c) V ~(x = ¢)
P(c,c) V(X =c¢)

R

W



Example using Equality Reasoning

oo

’“22 %

(.0

V. P(e,c) V —(x =~ ¢)
P(c,c) V(X = c¢)
I2(cXe) (X =~ ¢)

W

By



Example using Equality Reasoning

a~b
arc
-P(a,b)
Va. P(c,c) V —(z =~ c)
P(c,c) V(X =c¢)
P(c,c) (X =c¢)

W
Bv




Example using Equality Reasoning

a~b
arc
—P(a,b)
Va. P(c,c) V —(z =~ c)
W
P(c,c) V(X =c¢)
Py

P(c,c) (X =c¢)

{a=ba=xc},a,c) 0



Example using Equality Reasoning

a~b
arc
-P(a,b)
Va. P(c,c) V —(z =~ c)
P(c,c) V(X =c¢)
P(c,c) (X =c¢)

W
Bv

<{a%b,azc},a,c>-@

<{a%b,a%6},c,c>-{a}c,a:a}

rbrs



Example using Equality Reasoning

a~b
arc
-P(a,b)
Va. P(c,c) V —(z =~ c)
P(c,c) V(X =c¢)
P(c,c) (X =c¢)

W
Bv

{a~bya=c},a,c) -0
({ambaxc},ce)-{a=ca~a}l

rbrs



Example using Equality Reasoning

a~b
arc
-P(c,b)
Va. P(c,c) V —(z =~ c)
P(c,c) V(X =c¢)
P(c,c) (X =c¢)

W
Bv




Example using Equality Reasoning

a=xb
a=c
-P(c,b)
Va. P(c,c) V —(z =~ c)
P(c,c) V(X =c¢)
Ple,)  ~(X~0)

W
Bv

({amb,a~c},bc)-0



Example using Equality Reasoning

a=b
a~c
-P(c,b)
V. P(e,c) V —(x =~ ¢)

P(c,c) V(X =c¢) ’Yv

P(c,c) (X =~¢) By
({a~bja=c},bc)-0

rbrs

({fambamc},a,c) {b>=abx=b}



Example using Equality Reasoning

a=b
a~c
-P(c,b)
V. P(e,c) V —(x =~ ¢)

P(c,c) V(X =c¢) ’Yv

P(c,c) (X =~¢) By
({a~bja=c},bc)-0

rbrs

({a~bamc},a,c)-{b>a,bxb}



Example using Equality Reasoning

a~b
arc
-P(c,b)
Va. P(c,c) V —(z =~ c)

P V(X ~ o) BW
P(c,c) ~(X~c) 7Y
({a~b,a=c},bc) -0 |
{a~barcl,ac)-{b=ab~bt '
rbrs

({ambaxc},ce)-{a=ca~ab>abx~b}



Example using Equality Reasoning

a=b
arc
-P(c,c)

Va. P(c,c) V —(z = c)
P(c,c) V(X = ¢)
P(c,c) (X =~ c¢)

0 ©

W
Bv




Example using Equality Reasoning

a=b
amc
=P(c,c)
V. P(e,c) V—(x =~ ¢)
W
P(c,c) V=(c=c) 5
P(c,c) (X =~c)




Example using Equality Reasoning

a=~b
a =~ cC
-P(c,c)
Vx. P(c,c) V —(z = ¢)
W
P(e,e) V(X = ¢) 5
P(c,c) —(c~c) "’
© © © O
~(X ~e)



Reasoning Modulo Theory

Simple Set Theory
e A:Va,b.aCb&sVe.z€a=x€b
e As: Va,b.a=bsalCbAbCa
e C:Va.aCa

Ay N Ay N =C

(Va,b.a CbeVe.x €a=x €D)
ANNa,b.a=bsaCbADCa)
A =(Va. a C a)



Reasoning Modulo Theory

(Va,b.a CbeVe.xca=xze€b) A (Va,b.a=b<aCbAbCa)
A =(Va.a Ca)

Va,b.a CbsVr.x€a=x€b Va,b.a=b<aCbAbCa,
—(Va.a C a)

~(a C a) o

Vb AChoVrocAsach zz
ACB&Ve.z e A=>z2€B 3
ACBzecA=z€eB ~(ACB),~(Ve.te A=>zeB) ' *

)
c={Aw~a,B~ a} 7 —(aCa), (V. z €a= 1z €a)
—(s€a=s€a)
(s €a)(s€a)

O]

-V

=




Reasoning Modulo Theory

Ma,b.aCbevVr.oca=xe€b) AN(Va,b.a=bsaCbAbCa)
A =(Va.a C a)
Va,b.a CbsVr.x ea=x€b Va,b.a=b<saCbAbCa,
=(Va. a C a)
~ca)
Vb.ACbsVe.x € A=z €b
ACB&SVe.xe A=z € B
ACB,xeA=z€eB -(ACB),~(Vz.o € A=z € B)
c={A—a,B~ a} 7 =(a Ca),~(Vz.z €a= x € a)
“(s€a=s€a)
(s €a),(s€a)
©

(ETN

Oy

W

Be

~— [ —

g
5y

[0




Deduction Modulo Theory (DMT)

Main Heuristic
(VZ.) A < F where:

e A is an atomic formula
e F'is a non-atomic formula

Axiom: Va,b.a Cb<Vr.x ca=x €D
Rule: ACB—wVr.zx€c A=>x€eB

Axiom: Va,b.a=b< aCbAbCa
Rule: A=B—+ACBABCA



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—Ve.ze A=z2€B

A=B—>ACBABCA

—(Va. a C a)



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—Ve.xe A=z €B

A=B—>ACBABCA

=(Va. a C a)

~(aCa) "



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—sVz.ze A= z€ B

A=B—>ACBABCA

=(Va. a C a)

—(a C a) -



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—Ve.xeA=zeB

A=B—->ACBABCA

=(Va. a C a)
@ca)
(Vz.z €a =1z €a)

-V

— (A= a,B—a)



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—-Vr.x e A=z €B

A=B—->ACBABCA

=(Va. a C a)
—(a C a)
-(Vz.x €a =z €a)

-V

— (A= a,B—a)



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—»Ve.xeA=z€B

A=B—->ACBABCA

—(Va.a C a)
—(a C a)

-(Ve.z €a=x € a)
—(s€a=s€a)

v

— (A~ a,Bw~ a)
O




Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—Vx.ze A=z2€B

A=B—>ACBABCA

—(Va.a C a)
—(Vz.x €a=x €a)
—(s€a=s€a)
—(s€a)(s€a)

)

— (A~ a,B+a)

[

=



Deduction Modulo Theory (DMT)

Rewrite Rules
ACB—Ve.xe A=z eB

A=B—->ACBABCA

—(Va. a C a)
~@ca

(Vz.x €a=z€a)
“(s€a=s€a)

—(s€a)(s€a)
®

-V

— (A~ a,B—a)
Y

(0 2




Deduction Modulo Theory (DMT)

Benefits
e Avoid combinatorial explosion
e "“Useless” axioms aren't triggered
e Shorter proof
e Not limited to one theory

Integration
e Triggered when a predicate is generated
e Backtrack if multiples rules are available



Proof Tree and Segments

Figure 8: S is an initial segment, S’ is a branch, and S C 5.



Mapping

T T’

Figure 9: The branch B’ is mapped to the initial segment m(B’), which
means B’ contains at least all the formulas of m(B’).



Key ldeas of the Proof
e We consider a proof (T',0) for a formula F' with a reintroduction
limit [
e We consider the proof (T”,c") generated by Goéland with the same
limit
e We build a mapping between T" and T" and show that every branch
is T is going to have at least all the formulas than the equivalent

onein T
Critical Points

e The agreement mechanism terminates
e A “good"” substitution cannot be forbidden
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