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Abstract. We introduce SC-TPTP, an extension of the TPTP deriva-
tion format that supports sequent formalism, enabling seamless proof
exchange between interactive theorem provers and first-order automated
theorem provers. We provide a way to represent non-deductive steps—
Skolemization, clausification, and Tseitin normal form—as deductive
steps within the format. Building upon the existing support in the Lisa
proof assistant and the Goéland theorem prover, SC-TPTP ecosystem is
further enhanced with proof output interfaces for Egg and Prover9, as
well as proof reconstruction support for HOL Light, Lean, and Rocq.

1 Introduction

Interoperability of proof systems, in particular automated and interactive theo-
rem provers (ATPs and ITPs), involves several related but distinct challenges,
including translation of statements across different logical foundations, alignment
of concepts between mathematical libraries, and transfer of proofs. Focussing on
proof transfer, this paper proposes a standardized format for export and im-
port of proofs in an extension of first-order logic, integrating it into a variety
of proof-producing and proof-consuming systems. Such standardized proof for-
mats have multiple uses [58,48], of which we highlight three. First, ATPs deploy
complex algorithms and heuristics to solve difficult problems, making them vul-
nerable to bugs. A standardized proof format and corresponding proof checker
enable proof assistants with a small trusted kernel to verify the correctness of
automated provers. This validation helps to evaluate ATPs in benchmarks and
competitions, ultimately enhancing the trustworthiness of theorem provers.

Another key use is the collection of proofs from different tools, similar to the
TSTP solution library [54], enabling comparisons of proof objects across various
metrics, facilitating analysis and serving as training material for AI tools such
as large language models. These proof collections are most valuable when the
proofs are expressed in a unified format. One final use of standardized proofs,
which we illustrate in this paper, is the ability for users of interactive theorem
provers (ITPs) to invoke automated theorem provers (ATPs) as tactics. These
tactics, known as hammers, are available in many ITPs [46,23,35], but do not
always ensure the translation and validation of the ATP’s proof. Some ITPs treat
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the ATP as an oracle, bypassing the formal kernel of the ITP and accepting the
ATP-proven statement as an axiom, which necessitates trust in both the ATP
and the translation process. Other hammers involve running an internal tactic
that, while less powerful, is proof-producing, using lemmas discovered by the
ATP or filling in intermediate steps in place of the ATP when possible [46]. This
approach requires effectively rediscovering the proof, which can fail.

Challenges. As noted in [11], “One of the main difficulties with proof recon-
struction is that each prover has its own (often undocumented) proof format
and inference rules”. For this reason, most existing proof reconstruction imple-
mentations focus on one source and one target system and are done most often
with SMT solvers, for which there is an ongoing effort to establish proof for-
mats [16,52,39,15,27,3]. A standardized format with well-documented syntax,
proof steps, and parameters will help minimize the duplication of work. In gen-
eral, if n systems each import proofs from m other systems, this requires n ·m
implementations, including parsing, translation, and proof reconstruction. With
one middle ground format, only n+m such implementations are required.

Approach. We propose to use a list of sequents in an extension of first-order
logic (FOL) as the foundation for a concrete proof format, SC-TPTP. FOL is
widely used by many relevant tools and, as past work on proof transfer and
interoperability highlights, the practical challenges are significant even without
the added complexity of unifying diverse logical foundations. For our deduction
system, we adopt sequent calculus, a well-established formalism with both the-
oretical and practical benefits. Notably, it can naturally represent proofs from
tableaux calculus, resolution calculus, and natural deduction.

We base our proof format on the TPTP derivation format, due to its preva-
lence in the field, its human-readable syntax, and the number of tools already
compatible with it. TPTP (Thousands of Problems for Theorem Provers) [56]
is a large collection of problems used to test and evaluate automated theorem
provers. It also serves as a specification format [57] for writing these problems
and their derivations, where lists of formulas are each deduced from previous ones
or from axioms. However, TPTP does not specify which proof steps are allowed,
their parameters, or how formulas are derived. To address this, we introduce
SC-TPTP, which stands for Sequent Calculus - TPTP.

A preliminary proposal for SC-TPTP was presented in [20], introducing its
use in interfacing the Lisa proof assistant [30] and the Goéland ATP [21], en-
abling proof exchange between the two systems. The initial version raised ques-
tions about generalizing the format to more proof systems and representing
clausification, as many ATPs rely on clausification via Tseitin normal form and
Skolemization. Since these two transformations only preserve satisfiability, they
differ from sequent calculus rules. In this paper, we present our approach to rep-
resenting Tseitin normal form and Skolemization within a purely deductive proof,
demonstrating proof reconstruction for the resolution-based prover Prover9.

Contributions. Our main contributions are as follows:
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– We present a refined version of the SC-TPTP proof format (and extend the
underlying TPTP syntax) [20], introducing schematic symbols and structure
sharing for terms and formulas.

– We describe how important non-deductive and satisfiability-preserving steps,
in particular Tseitin’s transform, can be performed in a purely deductive
logical system suitable for interactive theorem provers.

– We make available a set of utilities to handle certification of clausification
automatically, to ease adoption of the format by more tools.

– We implement SC-TPTP interfaces for additional ITPs including HOL Light,
as a representative of the HOL-family of proof assistants, Lean and Rocq
(partial support), as representatives of dependently typed proof assistants
and extend the support in Lisa, as a representative of systems based on set
theory. This provides the users of these proof assistant with the ability to
invoke ATPs supporting SC-TPTP as hammers with proof reconstruction.
Beyond Goéland, we implement SC-TPTP proof production for additional
ATPs: Prover9, a resolution-based solver which makes use of our approach to
certifying clausification, and egg, a popular e-graph based tool for reasoning
with equality.

Our implementations, including a library of utilities to parse, manipulate, and
transform SC-TPTP proofs are available at

https://github.com/orgs/SC-TPTP/repositories

The present text is the full version, including appendices, of [29].

2 The SC-TPTP Format

SC-TPTP is based on the TPTP format, where proofs are represented with
derivations. A derivation is a list of annotated formulas, each of which is equipped
with a name, a role, and, in some cases, an indication of how the formula was
deduced. Formulas are essentially part of the FOFX grammar in TPTP.

Example 1. Given the valid formula ∃x. ∀y. (d(x) ⇒ d(y)), an automated prover
might produce the following SC-TPTP proof for the drinker’s paradox conjec-
ture:

fof(phi, let, ?[X]: ![Y]: (d(X) ⇒ d(Y))).
fof(f1, plain, [d(X), d(Y)] −→ [d(Y0), d(Y)],

inference(hyp, [status(thm), 1], [])).
fof(f2, plain, [d(X)] −→ [(d(Y) ⇒ d(Y0)), d(Y)],

inference(rightImplies, [status(thm)], [f1])).
fof(f3, plain, [d(X)] −→ [![Y0] : (d(Y) ⇒ d(Y0)), d(Y)],

inference(rightForall, [status(thm), 0, 'Y0'], [f2])).
fof(f4, plain, [d(X)] −→ [$phi, d(Y)],

inference(rightExists, [status(thm), 0, $fot(Y)], [f3])).
fof(f5, plain, [] −→ [$phi, d(X) ⇒ d(Y)],

https://github.com/orgs/SC-TPTP/repositories
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inference(rightImplies, [status(thm), 1], [f4])).
fof(f6, plain, [] −→ [$phi, ![Y]: (d(X) ⇒ d(Y))],

inference(rightForall, [status(thm), 1, 'Y'], [f5])).
fof(f7, plain, [] −→ [$phi],

inference(rightExists, [status(thm), 0, $fot(X)], [f6])).

In general, an annotated formula in SC-TPTP follows the pattern
fof(name, role, statement, annotation).

– The name of a step is an identifier that later proof steps refer to.
– SC-TPTP recognizes five roles: axiom indicates that the formula is an axiom

and can be used as a leaf in the derivation, conjecture does not have a logical
meaning in the proof and indicates what the proof is supposed to prove,
plain indicates a valid statement, deduced from previously statements or
axioms, assumption is used if the step does not have any premises, and let,
a new role, is used to introduce shorthands, such as phi in the first line of the
example proof above. Let statements should not be referred to as premises of
future steps; instead, they introduce a new defined constant symbol, which
can be used in first-order formulas. Any occurrence of $phi is a shorthand
(without any variable renaming) of the formula it stands for. Let bindings
enable structure sharing for proofs, which often need to repeatedly state the
same assumptions. Terms can also be bound to identifiers using annotated
terms (not present in normal TPTP syntax), e.g. fot(t, let, f(X, c)).

– The statement is either a formula, or a sequent. A sequent is a pair of sets
of formulas of the form [ϕ1, ...] −→ [ψ1, ...]. A formula is a shortcut for the
sequent with an empty left side and one formula on the right side.

– The annotation indicates how the formula was derived and is of the form
inference(stepName, [status(thm), p1, ..., pn], [r1, ..., rn]). Fol-
lowing the SZS ontologies [55], status(thm) indicates the logical status of
the formula. In SC-TPTP, all derived statements are thm. The pi are pa-
rameters used to efficiently check and transform the proof, and depend on
the specific proof step. The ri’s are the premise of the steps. They always
correspond to names of previous annotated formulas.

Proof Step Levels. The basic steps of sequent calculus, along with substitu-
tion of equal terms or equivalent formulas, and the instantiation of free schematic
symbols (Appendix B), define the logic of SC-TPTP. These steps are low-level
and can be efficiently simulated by any proof system that supports first-order
logic. However, outputting strict sequent calculus proofs is a stringent require-
ment for theorem provers. To facilitate the adoption of the format, SC-TPTP
proofs allow various proof steps, which are organized into levels.

The first level includes exactly the steps from Appendix B, while subse-
quent levels are flexible and expected to evolve. The second level contains more
advanced proof steps for which an algorithm exists to eliminate them, i.e., pro-
cessing an SC-TPTP proof and unfolding every occurrence of the proof into level
1 steps.
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The third level consists of steps that lack such an implementation but are
easily deduced and verified by most proof assistants. With moderate effort, a level
3 step can be converted into a level 2 step. The fourth level contains arbitrary
sound deductive steps that cannot be reliably unfolded and may be difficult to
implement in a proof-producing form.

These levels offer useful stepping stones to make a solver proof-producing,
without needing to implement every proof reconstruction detail, such as congru-
ence closure or negation normal form, which can be time-consuming.

Schematic Symbols. We extend the syntax from [20] by introducing sup-
port for schematic formulas, predicates, and functions. Semantically, schematic
symbols are halfway between constant symbols and variables: they can be in-
stantiated by terms and formulas but cannot be bound. In higher-order systems,
there is no true distinction between schematic symbols and higher-order vari-
ables. However, in first-order logic, they are essential for expressing theorem
and axiom schemas. For example, in the induction schema of Peano arithmetic,
P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n), P is a schematic predicate of ar-
ity 1 that can be instantiated by any formula with one free variable. Schematic
symbols also allow proving generic theorems useful in first-order logic without
relying on specific axioms. For instance, the De Morgan law used to compute
negation normal form ¬(ϕ ∨ ψ) ⇔ ¬ϕ ∧ ¬ψ is generic over the formulas ϕ and
ψ, which are formally schematic formulas. Schematic symbols are conservative
over strict first-order logic and typically supported by first-order proof assistants,
such as in Mizar and Lisa. In Metamath [40], schematic variables are referred
to as metavariables, while in Isabelle/FOL, higher-order variables in the meta
language can play this role. In SC-TPTP, schematic predicates and functions
start with capital letters.

Epsilon Terms. An important addition to SC-TPTP is the support for rea-
soning with Hilbert’s epsilon operator ϵ. This operator is a term level quantifier
with the following introduction rule:

Γ ⊢ ∆, ϕ rightEpsilon
Γ ⊢ ∆, ϕ[x := (ϵx.ϕ)]

Informally, ϵx. ϕ denotes an arbitrary element satisfying ϕ, if such an element
exists. This addition to sequent calculus is conservative [61], a property known
as the Epsilon Theorem. Our motivation for introducing epsilon terms is to
allow efficient certification of Skolemization. Constructive deskolemization, the
problem of computing a proof of a formula ϕ from a proof of a formula ϕ′, where
ϕ′ is the result of applying Skolemization to ϕ, is hard: all known methods have
exponential or non-elementary blow-up [5], depending on whether inner or outer
Skolemization is used. This happens even when the proof is cut-free [6].

An epsilon-term ϵx.ϕ can be seen as a Skolem function f(y1, ..., yn) where
yis are all the free variables of ϕ except for x. This enables certification of
Skolemization in purely deductive proofs with a linear number of substitution
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steps. The downside is that the target system must support epsilon terms, but
this is the case in many proof assistants3. SC-TPTP proofs use # to denote ϵ.
Logic Options to Classify Proofs. SC-TPTP uses annotations in the TPTP
header to indicate logical features used in the proof and advanced SC-TPTP
features. Such logical annotations (Appendix A), are written similarly to the
Specialist Problem Class (SPC) annotations in TPTP. A declaration:

% Logic : classical_epsilon_schem_let
for example, indicates that the proof uses classical logic (classical), permitting
sequents with multiple formulas on the right hand side, epsilon choice operator
(epsilon), schematic predicates or functions (schem), and uses defined expres-
sions (let) that are defined with the let role. Table 1 lists the current set of
logical options.

3 Simulating Non-Deductive Proofs

Some common proof strategies used by ATP are not deductive, meaning they do
not derive a true conclusion from true premises but instead transform the entire
problem. Typical examples include proofs by contradiction, Tseitin’s transform
and Skolemization. Most proof assistants, however, are based on purely deduc-
tive logic and cannot accept or prove these steps. When applied correctly, these
strategies preserve soundness, and since sequent calculus is complete, any state-
ment proven using non-deductive strategies will also have a proof in strict sequent
calculus. However, finding a pure sequent calculus proof can be computationally
difficult and time-consuming. Deskolemization, in particular, can blow up the
size of the proofs [5,6]. In any case, for all these classes of steps, it is not possi-
ble to simply define them as logical steps in SC-TPTP and unfold them locally.
Eliminating them from an ATP proof requires modifying the proof globally.

For the sake of conciseness, we briefly illustrate our approach to certifying
Tseitin’s transform, which makes use of let statements and schematic symbols.
A detailed explanation of how these non-deductive steps can be performed in
both forward and backward proofs in SC-TPTP is available in Appendix E.

Suppose that we have a formula ϕ given as an axiom, and we aim to deduce ⊥.
The structure of the desired proof from the clausified axioms will be as follows:

⊢ a1 ∨ ... ∨ an ... ⊢ z1 ∨ ... ∨ zn
...

⊢ ⊥
Where a1 ∨ ... ∨ an, ..., z1 ∨ ... ∨ zn are the clauses resulting from the Tseitin
transform of ϕ. But the clauses are not in general consequences of ϕ, as the
transformation only preserves satisfiability.

Suppose ϕ contains a ∧ b as a subterm. We simulate the first step of the
Tseitin’s transform as follows:
3 It is called The in Mizar, @ in HOL Light and HOL4, ϵ in Lisa, Some in Isabelle and
epsilon in Rocq and Lean (requires non-constructive axioms).
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⊢ ϕ(a ∧ b)
1.

A⇔ (a ∧ b) ⊢ ϕ(A) 2.
A⇔ (a ∧ b) ⊢ ¬A ∨ a 3.

A⇔ (a ∧ b) ⊢ ¬A ∨ b 4.
A⇔ (a ∧ b) ⊢ A ∨ ¬a ∨ ¬b

...
A⇔ (a ∧ b) ⊢ ⊥

5. instPred
(a ∧ b) ⇔ (a ∧ b) ⊢ ⊥

6. elimIffRefl⊢ ⊥

Step 1 is rightSubstIff. Steps 2, 3, and 4 are constant-size tautologies. Then
the resolution proof follows normally, independently of the A ⇔ (a ∧ b) on the
left-hand side.

Finally, we eliminate the assumption. Step 5 allows instantiating the
schematic formula A with an arbitrary formula. To justify equisatisfiability of
the Tseitin transform, we need to ensure that A is fresh. This is enforced here
by step 5. If A was not a fresh symbol but already appearing in ψ for example,
the initial part of the proof would still work, but step 5 would fail. Step 6 finally
eliminates the trivial assumption.

Note that every single step can be unfolded into a constant number of level
1 steps, making the whole proof of Tseitin transformation linear. All steps are
deductive and can be locally checked, independently of the rest of the proof.
The SC-TPTP utilities (Section 4.3) contain tools to automatically perform this
transformation on a proof, as well as skolemization, allowing a prover operating
on clauses to assume that the input formula is already clausified.

ITP ATP

TPTP formula

SC-TPTP proof

Fig. 1: SC-TPTP for hammers

4 Tools Connected using SC-TPTP

SC-TPTP was already supported by Lisa and Goéland. We add SC-TPTP inter-
faces to a selection of systems with a variety of logical foundations and principle
to demonstrate a broad potential of the approach.

4.1 Automated Theorem Provers Producing SC-TPTP Proofs

The following ATPs are able to produce proofs in the SC-TPTP format, that
can be readily verified by one of the ITP in Section 4.2.
Goéland. Goéland [21,19] is an automated theorem prover for first-order logic
with equality. It relies on a concurrent tableaux-based proof-search procedure
that allows it to conduct a fair branch exploration. The prover can perform
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deskolemization [49] and produce machine-checkable proofs in Rocq, LambdaPi
and SC-TPTP. App. F provides an example of a proof produced by Goéland.
Prover9. Prover9 [38] is an automated theorem prover for first-order logic with
equality that implements the resolution and paramodulation calculi, thus relying
on clausification. We implement proof producton for Prover9 in two steps. First,
we implement it when the input problem is clausal, that is, the conjecture is
$false and each axiom is a single clause [a, b, ...], naturally represented
as the sequent [] −→ [a, b, ...]. The steps of a resolution proofs directly
correspond to proof steps of SC-TPTP: the resolution step is similar to a cut
step, and the instantiation is exactly the instFun step. Then, we separately
implement certification of clausification, which uses Prover9 as a subroutine and
modify the output proof, as described in Section 3. The resulting procedure takes
arbitrary first order formulas as input and outputs verifiable SC-TPTP proofs.
egg. egg [60] (short for E-Graphs Good) is not a traditional ATP but a tool
implementing high-performance E-graphs [42] and saturation, often used to op-
timize programs. It can, however, be seen as solving a fragment of first-order
logic with equality, where the equivalence relation is the union of ⇔ and =. egg
has already been used for theorem proving in the Coquetier project [17].

egg outputs explanations for pairs of equivalent expressions [26,43]. We add
TPTP input for egg, which supports quantified equalities and equivalences as
assumptions and conjecture, and transforms egg justifications into SC-TPTP
proofs.

egg is also able to find the smallest representative in an equivalence class,
motivating using SC-TPTP for more than yes/no answers. We implement the
experimental simplify role for annotated formulas and terms, exclusive to con-
jectures, which prompts the solver to find a simplified version of the given term
or formula, and prove its equivalence to the original. For example:

fof(a1, axiom, (! [Xx]: (Xx = sf(sf(sf(sf(sf(Xx)))))))).
fof(a2, axiom, (! [Xx]: (Xx = sf(sf(sf(Xx)))))).
fot(c, simplify, (p(sf(c)))).
...
fof(f15, plain, [] −→ [(p(sf(c)) <⇒ p(c))], inference(...)).

This feature is currently supported only by egg. Appendix F provides examples
of a proof produced by our egg wrapper, with level 1 and level 2 steps.

4.2 Interactive Theorem Provers Validating SC-TPTP Proofs

Lisa. Lisa [30] is a proof assistant based on first order logic and set theory. Its
logical system is an extension of sequent calculus, making proof import straight-
forward, whereas exporting a problem requires a simple form of monomorphiza-
tion. We developed a dedicated tactic for several provers, illustrated below. The
proof reconstruction implementation is largely shared across these tactics.
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val divide_mult_shift = Theorem((
∀(x, x/t1 === x), ∀(x, ∀(y, x/y === t1/(y/x))),
∀(x, ∀(y, (x/y)*y === x))) |- ((t2/t3)*(t3/t2))/t1 === t1):

have(thesis) by Egg

val drinkers2 = Theorem(∃(x, ∀(y, d(x) ==> d(y)))):
have(thesis) by Goeland

val thm = Theorem((∀(x, P(x)) \/ ∀(y, Q(y))) ==> (P(∅) \/ Q(∅)) ):
have(thesis) by Prover9

HOL Light. HOL Light [31] is an LCF-style interactive theorem prover based
on higher-order logic implemented in OCaml. We contribute an extensible way
to generically construct interfaces to external provers for use in HOL Light, and
a TPTP parser in OCaml using ocamllex and menhir supporting the FOFX frag-
ment with the SC-TPTP extensions decribed here. Our implementation provides
a function sctptp_tac, which, given a way to construct invocations to an ex-
ternal solver, can be instantiated in one line as a reusable tactic. Instantiations
EGG, GOELAND, and PROVER9 for the respective ATPs are included. Each accepts
a list of existing theorems to use as axioms, and a sequent to prove, and returns
a thm object proving the sequent if a proof was found and reconstructed. The
following are examples of HOL Light invocations of Goéland and egg:

(* syntax: PROVER [premises] [antecedants] conclusion *)
# let drinkers = GOELAND [] [] `?x:ind. !y. d(x) =⇒ d(y)`;;
val drinkers : thm = |- exists x. forall y. d x =⇒ d y
# let div_mult_shift = EGG [] [

`!x. x/t1 = x`; `!x y. x/y = t1/(y/x)`; `!x y. (x/y)*y = x`
] `((t2/t3)*(t3/t2))/t1 = t1`;;

val div_mult_shift : thm =
forall v3 v5. v3/v5 = t1/(v5/v3), forall v3 v5. v3/v5 * v5 = v3,
forall v3. v3/t1 = v3 |- (t2/ t3 * t3/t2) / t1 = t1

To transform the original problem (possibly containing higher-order terms) into a
first-order SC-TPTP querry, we adapted the monomorphization procedure from
the existing implementation of the Meson tactic in HOL Light. All higher-order
terms are abstracted into named untyped first-order constants. During proof
reconstruction, however, the types for all terms must be recovered. To this end,
we implement a type inference and unification procedure similar to that of the
simply-typed lambda calculus.
Lean. Lean [25] is an interactive theorem prover based on dependent type the-
ory. In our framework, proof reconstruction is implemented using the standard
Lean 4 tactic interface. We developed custom tactics, egg, prover9, and goeland,
that automate the entire workflow, including sequent export to TPTP, invoca-
tion of the underlying ATP, and subsequent parsing, reification, reconstruction,
and checking of the proof within Lean 4, allowing, e.g., the following use.
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example ( α : Type) [Nonempty α] (d : α → Prop) :
∃ y : α, ∀ x : α, (d x → d y) := by
goeland

Our development uses the monomorphization and reification tools from the Lean
Auto project [2]. We adapt its mechanism for exporting formulas from the TH0
to the FOF format within the TPTP framework. In the translation of TPTP
expressions to Lean expressions, we use type inference to recover information
about types of variables. Our proof reconstruction system is implemented using
a backward proof strategy within a single global context, allowing us to leverage
the Lean 4 tactic proof mode.
Rocq. Similar to the more recent Lean, Rocq is a proof assistant based on a
dependently typed calculus. Building upon a proof validating interface between
Rocq and egg in the Coquetier project [17], we have developed a prototype that
uses SC-TPTP to reconstruct proof statements in the intuitionistic fragment
of first-order logic. This interface is currently more limited than one for Lean
because it does not make use of monomorphization and supports less level 3 proof
steps, but it already provides another path for validating some of the proofs of
automated solvers.

4.3 SC-TPTP Utilities and Central Repository

To support the SC-TPTP format, we release a library of tools and utilities to
handle SC-TPTP proofs at https://github.com/SC-TPTP/sc-tptp. The library
provides a parser and an independent proof checker for SC-TPTP proofs, as well
as functions able to unfold level 2 proof steps into level 1 proof, such as a proof-
producing implementation of an e-graph able to unfold the congruence proof
step. It also contains a module able to certify clausification and extend proofs of
formulas in CNF provided by ATPs relying on clausification to form a complete
proof of the original formula, which is central to SC-TPTP support for Prover9.
The library further contains helpers, examples, test cases and documentation.
The repository also contains links and forks of tools with SC-TPTP support.
The suite of tools is under active development.

5 Related Work

An excellent review of hammers for proof assistants is [11]. In the domain of
proof system interoperability but in a very different direction, logical framework
such as dedukti [4] and the Lambdapi [1] proof assistant aim at unifying different
mathematical foundations to facilitate the sharing of mathematical libraries [12].
SC-TPTP on the other hand is a proof exchange format, that is, a data exchange
format, and is designed as such. More practically, Dedukti/Lambdapi files are
not adequate to represent sequent calculus proof data in such a way that it
is easy to export and import. Accessorily, it is also not possible to naturally
represent sequents in Dedukti with set semantics. It is also worth noting that

https://github.com/SC-TPTP/sc-tptp
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most proof systems (ATPs and ITPs) already have some support for the TPTP
format.

In the SMT community, diverse proof formats have emerged: LFSC [53] was
originally used by cvc5 [8] and its predecessors. Z3 [24] has its own format [41].
While there is yet no universally accepted format, efforts have been carried
toward this goal [10,33]. The Alethe [51] format is based on SMT-LIB [9], the
SMT equivalent of the TPTP World, and supported by cvc5 and veriT [18].

The SAT solving community has developed a series of increasingly more
optimized and efficient format for certifying proofs of SAT solvers: the DRAT
[59,47] format, LRAT [22] and GRAT [37], VeriPB [13,28] and the corresponding
VeriPB-CakePB checker [14] These formats are used in the yearly SAT Com-
petition [32] and produced by state-of-the-art SAT solvers. This long chain of
improvements suggests that the current version of SC-TPTP will similarly go
through various refinements and improvements over the years.

Closer to our approach, extension of the TPTP syntax to the connection
calculus [45] was implemented in the leanCoP [44] and Connect++ [34] provers,
although intermediate steps do not correspond to logical formulas. Efforts for
supporting the connection calculus and Connect++ in SC-TPTP are ongoing.

Independently, the TESC format [7] offers a sequent-based proof format ca-
pable of compiling and verifying solutions from Vampire [36] and E [50].

6 Conclusion

We have presented SC-TPTP, a proof format for representing proofs in first-
order logic with equality, enabling verification of proofs produced by first-order
ATPs and transfer of first-order proofs between proof systems. We demonstrated
how clausification can be represented in the format and implemented SC-TPTP
interfaces in several types of automated and interactive theorem provers.

While in proof assistants with first-order foundations all statements can easily
be fed into first-order ATP, systems based on more complex logics, in particu-
lar dependent types, typically require monomorphization to maximize usability.
This is a largely independent process implemented by hammers in these systems;
we hope in the future to more closely integrate SC-TPTP with existing hammers
in ITPs.
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A Proof Construct Annotations

classical The proof requires is carried in classical logic and contains se-
quents with multiple formulas on the right-hand side, or uses
higher level steps only valid in classical logic.

epsilon The proof makes use of ϵ-terms.
propext Usually, substitution of equivalent formulas (leftSubstIff and

rightSubstIff) is a meta theorem of first-order logic and can be
unfolded. However, this is not the case if substitution is carried
below epsilon quantifiers. In this case, propositional extensional-
ity is required.

schem The proof uses schematic predicates or functions, which start with
a capital letter.

let The proof uses defined expressions starting with $ that are defined
with the let role

fot The proof uses top-level annotated terms, with the let or
simplify role.

Table 1: Annotations defined for fine-grained logical properties. We expect more
will exist in the future.
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B Level 1 Proof Steps of SC-TPTP

Rule name Premises Rule Parameters

leftFalse 0 Γ,⊥ ⊢ ∆ i:Int: Index of ⊥ on the left

rightTrue 0 Γ ⊢ ⊤,∆ i:Int: Index of ⊤ on the right

hyp 0 Γ, A ⊢ A,∆ i:Int: Index of A on the left
j:Int: Index of A on the right

leftWeaken 1 Γ ⊢ ∆
Γ, A ⊢ ∆ i:Int: Index of A on the left

rightWeaken 1 Γ ⊢ ∆
Γ ⊢ A,∆ i:Int: Index of A on the right

cut 2
Γ ⊢ A,∆ Σ, A ⊢ Π

Γ,Σ ⊢ ∆,Π i:Int: Index of A on the right of the first premise

leftAnd 1
Γ, A,B ⊢ ∆

Γ, A ∧B ⊢ ∆ i:Int: Index of A ∧B on the left

leftOr 2
Γ, A ⊢ ∆ Σ, B ⊢ Π

Γ,Σ, A ∨B ⊢ ∆,Π i:Int: Index of A ∨B on the left

leftImplies 2
Γ ⊢ A,∆ Σ, B ⊢ Π

Γ,Σ, A⇒ B ⊢ ∆,Π i:Int: Index of A⇒ B on the left

leftIff 1
Γ, A⇒ B,B ⇒ A ⊢ ∆

Γ, A⇔ B ⊢ ∆ i:Int: Index of A⇔ B on the left

leftNot 1
Γ ⊢ A,∆
Γ,¬A ⊢ ∆ i:Int: Index of ¬A on the left

leftExists 1
Γ, A[x := y] ⊢ ∆

Γ, ∃x.A ⊢ ∆
i:Int: Index of ∃x.A on the left
y:String: Variable in place of x in the premise

leftForall 1
Γ, A[x := t] ⊢ ∆

Γ, ∀x.A ⊢ ∆
i:Int: Index of ∀x.A on the left
t:Term: Term in place of x in the premise

rightAnd 2
Γ ⊢ A,∆ Σ ⊢ B,Π

Γ,Σ ⊢ A ∧B,∆,Π i:Int: Index of A ∧B on the right

rightOr 1
Γ ⊢ A,∆

Γ ⊢ A ∨B,∆ i:Int: Index of A ∨B on the right

rightImplies 1
Γ, A ⊢ B,∆

Γ ⊢ A⇒ B,∆ i:Int: Index of A⇒ B on the right

rightIff 2
Γ ⊢ A⇒ B,∆ Σ ⊢ B ⇒ A,Π

Γ ⊢ A⇔ B,∆ i:Int: Index of A⇔ B on the right

rightNot 1
Γ, A ⊢ ∆

Γ ⊢ ¬A,∆ i:Int: Index of ¬A on the right

rightExists 1
Γ ⊢ A[x := t],∆

Γ ⊢ ∃x.A,∆
i:Int: Index of ∃x.A on the right
t:Term: Term in place of x in the premise

rightForall 1
Γ ⊢ A[x := y],∆

Γ ⊢ ∀x.A,∆
i:Int: Index of ∀x.A on the right
y:String: Variable in place of x in the premise

rightRefl 0 Γ ⊢ t = t,∆ i:Int: Index of t = t on the right

Table 2: Level 1 rules of SC-TPTP, part 1.
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Rule name Premises Rule Parameters

rightSubst 1
Γ ⊢ P (t),∆

Γ, t = u ⊢ P (u),∆

i:Int: Index of t = u on the left
backward:Int: If 1, the substitution is done backward
P(Z):Term: Shape of the predicate on the right
Z:String: Variable indicating where the substitution takes
place

leftSubst 1
Γ, P (t) ⊢ ∆

Γ, t = u, P (u) ⊢ ∆

i:Int: Index of t = u on the left
backward:Int: If 1, the substitution is done backward
P(Z):Term: Shape of the predicate on the left
Z:String: Variable indicating where the substitution takes
place

rightSubstIff 1
Γ ⊢ R(ϕ),∆

Γ, ϕ⇔ ψ ⊢ R(ψ),∆

i:Int: Index of ϕ⇔ ψ on the left
backward:Int: If 1, the substitution is done backward
R(Z):Var: Shape of the predicate on the right
Z:String: Variable indicating where in P the substitution
takes place

leftSubstIff 1
Γ, R(ϕ) ⊢ ∆

Γ, ϕ⇔ ψ,R(ψ) ⊢ ∆

i:Int: Index of ϕ⇔ ψ on the left
backward:Int: If 1, the substitution is done backward
R(Z):Var: Shape of the predicate on the right
Z:String: Schematic formula indicating where in P the sub-
stitution takes place

instFun 1
Γ[FX ] ⊢ ∆[FX ]

Γ[FX := tX ] ⊢ ∆[FX := tX ]

'F': String: Schematic function to substitute.
t:Term: Term, possibly containing X1, ..., Xn, to instantiate
F with
Xs: Seq[String]: Variables parametrizing t. The length
gives the arity of F

instPred 1
Γ[PX ] ⊢ ∆[PX ]

Γ[PX := ϕX ] ⊢ ∆[PX := ϕX ]

'P': String: Schematic predicate to substitute.
ϕ: Formula: Formula, possibly containing X1, ..., Xn, to in-
stantiate F with
Xs: Seq[String]: Variables parametrizing ϕ. The length
gives the arity of P

rightEpsilon 1
Γ ⊢ A[x := t],∆

Γ ⊢ A[x := ϵx.A],∆

A:Formula: Formula defining the epsilon-term
X:String: Variable being substituted in A
t:Term: Term in place of x in the premise

leftEpsilon 1
Γ, A[x := y] ⊢ ∆

Γ, A[x := ϵx.A] ⊢ ∆
i:Int: Index of A[x := y] on the left of the premise
y:String: Variable in place of x in the premise

Table 3: Level 1 rules of SC-TPTP, part 2.
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C Current Level 2 Proof Steps of SC-TPTP

Rule name Premises Rule Parameters

congruence 0 Γ,∆
No parameters
Γ contains a set of ground equalities such that P
and Q are congruents

leftHyp 0 Γ, A,¬A ⊢ ∆ i:Int: Index of A on the left

leftNotAnd 2
Γ,¬A ⊢ ∆ Σ,¬B ⊢ Π

Γ,Σ,¬(A ∧B) ⊢ ∆,Π i:Int: Index of ¬(A ∧B) on the left

leftNotOr 1
Γ,¬A,¬B ⊢ ∆

Γ,¬(A ∨B) ⊢ ∆ i:Int: Index of ¬(A ∨B) on the left

leftNotImplies 1
Γ, A,¬B ⊢ ∆

Γ,¬(A⇒ B) ⊢ ∆ i:Int: Index of ¬(A⇒ B) on the left

leftNotIff 2
Γ,¬(A⇒ B) ⊢ ∆ Σ,¬(B ⇒ A) ⊢ Π

Γ,Σ,¬(A⇔ B) ⊢ ∆,Π
i:Int: Index of ¬(A⇔ B) on the left

leftNotNot 1
Γ, A ⊢ ∆

Γ,¬¬A ⊢ ∆ i:Int: Index of ¬¬A on the left

leftNotEx 1
Γ,¬A[x := t] ⊢ ∆

Γ,¬∃x.A ⊢ ∆
i:Int: Index of ¬∃x.A on the left
t:Term: Term in place of x in the premise

leftNotAll 1
Γ,¬A ⊢ ∆

Γ,¬∀x.A ⊢ ∆
i:Int: Index of ¬∀x.A on the left
y:String: Variable in place of x in the premise

Table 4: Current Level 2 rules of SC-TPTP, which can be unfolded into level 1
rules with the SC-TPTP utils.
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D Current Level 3 Proof Steps of SC-TPTP

Rule name Premises Rule Parameters

rightReflIff 0 Γ ⊢ A⇔ A,∆ i:Int: Index of A⇔ A on the right

rightSubstMulti 1
Γ ⊢ P (t),∆

Γ ⊢ P (u),∆

i_1, ..., i_n: Index of formulas tj = uj on the left
P(Z_1, ..., Z_n):Term: Shape of the formula on the
right
Z_1, ..., Z_n: Var: variables indicating where to substi-
tute

leftSubstMulti 1
Γ, P (t) ⊢ ∆

Γ, P (u) ⊢ ∆

i_1, ..., i_n: Index of formula tj = uj on the left
P(Z_1, ..., Z_n):Term: Shape of the formula on the
left
Z_1, ..., Z_n: Var: variables indicating where to substi-
tute

rightSubstEqForallLocal 1
Γ, ∀x.ϕ(x) = ψ(x) ⊢ R(ϕ(t)),∆
Γ, ∀x.ϕ(x) = ψ(x) ⊢ R(ψ(t)),∆

i:Int: Index of ∀x.ϕ(x) = ψ(x) on the left
R(Z):Var: Shape of the predicate on the right
Z:Form: Variable indicating where in P the substitution
takes place

rightSubstEqForall 2
Γ ⊢ R(ϕ(t)),∆

Σ ⊢ ∀x.ϕ(x) = ψ(x),Π

Γ,Σ ⊢ R(ψ(t)),∆,Π

i:Int: Index of ∀x.ϕ(x) = ψ(x) on the right of the
second premise
R(Z):Var: Shape of the predicate on the right
Z:Var: Variable indicating where in P the substitution
takes place

rightSubstIffForallLocal 1
Γ, ∀x.ϕ(x) ⇔ ψ(x) ⊢ R(ϕ(t)),∆
Γ, ∀x.ϕ(x) ⇔ ψ(x) ⊢ R(ψ(t)),∆

i:Int: Index of ∀x.ϕ(x) ⇔ ψ(x) on the left
R(Z):Var: Shape of the predicate on the right
Z:FormVar: Variable indicating where in P the substi-
tution takes place

rightSubstIffForall 2
Γ ⊢ R(ϕ(t)),∆

Σ ⊢ ∀x.ϕ(x) ⇔ ψ(x),Π

Γ,Σ ⊢ R(ψ(t)),∆,Π

i:Int: Index of ∀x.ϕ(x) ⇔ ψ(x) on the right of the
second premise
R(Z):Var: Shape of the predicate on the right
Z:Var: Variable indicating where in P the substitution
takes place

rightNnf 1
Γ ⊢ ϕ,∆
Γ ⊢ ϕ′,∆

i:Int: Index of ϕ on the right of the premise
j:Int: Index of ϕ′ on the right of the conclusion
ϕ and ϕ′ have the same negation normal form

rightPrenex 1
Γ ⊢ ϕ,∆
Γ ⊢ ϕ′,∆

i:Int: Index of ϕ on the right of the premise
j:Int: Index of ϕ′ on the right of the conclusion
ϕ and ϕ′ have the same prenex normal form

clausify 0 Γ, a ⇐⇒ b ◦ c ⊢ ∆
i:Int: Index of a ⇐⇒ b ◦ c on the left
∆ is a clause resulting from the inequality a ⇐⇒ b ◦ c

elimIffRefl 1 Γ, ∀x1, ..., xn.ϕ ⇐⇒ ϕ ⊢ ∆

Γ ⊢ ∆
i:Int: Index of ϕ ⇐⇒ ϕ on the left of the premise

res 2
Γ ⊢ A,∆ Σ ⊢ ¬A,Π

Γ,Σ ⊢ ∆,Π i:Int: Index of A on the right of the first premise

instMult 1
Γ[F1, ..., Fn],⊢ ∆[F1, ..., Fn]

Γ[G1, ..., Gn] ⊢ ∆[G1, ..., Gn]

Sequence of triplets of the form:
'F': String, t: Term|Formula, Xs: Seq[String].
Each triplet has the same construction as arguments of
instFun and instPred, but the substitution is carried
simultaneously.
Simultaneous substitution of function and predicate
schemas, including variables and formula variables.

Table 5: Current Level 3 rules of SC-TPTP, which can be verified.
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E Simulating Non-Deductive Proofs

Some common proof strategies used by automated theorem provers are not de-
ductive, in the sense that they do not deduce a true conclusion from true premises
but rather transform the entire problem. Typical such steps which are often
performed by automated theorem provers are proofs by contradiction, Tseitin’s
transform and Skolemization. Because these strategies, when applied correctly,
are sound, and because Sequent Calculus is complete, if a statement has a proof
using non-deductive strategies, it has a proof in strict sequent calculus. But this
proof may be (computationally) hard to find, and it may be much longer than
a proof using it. Deskolemization in particular is known to sometimes blow up
the size of the proofs [5,6]. In any case, for all three, it is not simply possible to
define them as logical steps in SC-TPTP and unfold them locally. Eliminating
them from an ATP proof require modifying the proof in its entirety.

Proof assistants typically have purely deductive systems, and their Kernel
typically don’t accept such steps. But they are necessary to transform a for-
mula into clausal normal form, which many ATPs rely on. In this section we
explain how proofs by contradiction, Tseitin’s transform and Skolemization can
be simulated deductively.

E.1 Proof by Contradiction with Backward and Forward Proofs

A common strategy to prove a conjecture ϕ is to assume ¬ϕ and deduce ⊥. In
TPTP proofs, this is typically denoted as:

fof(c1, conjecture, ϕ).
fof(nc1, negated_conjecture, ~ϕ).
...
fof(fn, plain, $false).

and we want to recover a proof of ϕ.
More generally, suppose a set of axioms ϕ1, ..., ϕn and conjecture ϕ are given.

We may assume ¬ϕ and proceed forward:

⊢ ψ1 ... ⊢ ψn
hyp¬ϕ ⊢ ¬ϕ

...
¬ϕ ⊢ rightNot⊢ ¬¬ϕ simp⊢ ϕ

As a formula and its universal closure are interdeducible, we assume without

loss of generality and for simplicity that ϕ has no free variable.
... denotes the

proof of ⊥ from the axioms and ¬ϕ. It can proceed entirely with the ¬ϕ formula
present on the left, without effect on any proof step.

Example 2. Conjecture ϕ := ∃x.∀y. p(x) ⇒ p(y)
Proof
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hyp
¬ϕ ⊢ ¬∃x.∀y. p(x) ⇒ p(y) sameNNF¬ϕ ⊢ ∀x.∃y. p(x) ∧ ¬p(y)

instForall¬ϕ ⊢ ∃y. p(x) ∧ ¬p(y)

hyp
¬ϕ, p(x) ∧ ¬p(y) ⊢ p(x) ∧ ¬p(y) simp

¬ϕ, p(x) ∧ ¬p(y) ⊢
leftExists¬ϕ, ∃y. p(x) ∧ ¬p(y) ⊢ cut¬ϕ ⊢ rightNot⊢ ¬¬ϕ simp⊢ ϕ

In Sequent Calculus, this kind of forward destructive proofs are somewhat cum-
bersome. All lvl 1 steps only introduce logical operators. To eliminate them
one typically need a hyp, an introduction rule, and a cut. For example, the
instForall unfolds into lvl 1 steps as follows:

¬ϕ ⊢ ∀x.∃y. p(x) ∧ ¬p(y)

hyp
∃y. p(x) ∧ ¬p(y) ⊢ ∃y. p(x) ∧ ¬p(y)

leftForall∀x.∃y. p(x) ∧ ¬p(y) ⊢ ∃y. p(x) ∧ ¬p(y) cut¬ϕ ⊢ ∃y. p(x) ∧ ¬p(y)
While such forward proofs work well for some proof system such as resolution,

there is another strategy for the backward proofs, highlighting the “proof search”
aspect of the procedure is simpler and more efficient for proof methods in non-
clausal form, such as the tableaux method.

Backward proofs by contradiction To prove ϕ, it is sufficient to prove ¬ϕ⇒
⊥. In sequent calculus, this gives:

hyp
ϕ ⊢ ϕ leftNot⊢ ¬ϕ, ϕ

A ↑
¬ϕ ⊢ cut⊢ ϕ

where A ↑ is a proof of ⊥ from ¬ϕ, intuitively printed backward. When looked
at from bottom to top, the left sequent calculus rules look like regular deduction.
For example, the leftAll rule allow arbitrary instantiation, the leftExists
rule force existential variables to be instantiated with fresh symbols and the
leftOr rules branches. Every branch needs to be close by a proof of ⊥, corre-
sponding to the assumption ⊥ ⊢, for the proof to be correct.

Example 3. Conjecture ∃x.∀y. p(x) => p(y)
Proof

p(x),¬ p(x) ⊢
leftAnd

p(x) ∧ ¬p(x) ⊢
leftForall∃y. p(x) ∧ ¬p(y) ⊢
leftExists∀x.∃y. p(x) ∧ ¬p(y) ⊢ sameNNF¬∃x.∀y. p(x) ⇒ p(y) ⊢ rightNot

⊢ ¬¬∃x.∀y. p(x) ⇒ p(y) simp
⊢ ∃x.∀y. p(x) ⇒ p(y)
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E.2 Clausification

Clausification is the transformation of a formula into a conjunction of disjunction
of literals. There are two steps in this transformation; Skolemization and the
Tseitin normal form. Both are not deductive steps; they return equisatisfiable
formulas rather than logical consequences of the input. Tseitin transform can
theoretically be replaced by a conjunctive normal form using distributivity, but
at an exponential cost. For Skolemization, a proof of a skolemized formula can
be up to non-elementarily smaller than a proof of the non-skolemized formula.
Hence for practical use it is necessary to be able to represent these non-deductive
operations efficiently.

Tseitin transform on axioms and negated conjecture Suppose we have
a formula ϕ given as an axiom, and we aim to deduce ⊥. The structure of the
desired proof from the clausified axioms will be as follows:

⊢ a1 ∨ ... ∨ an ... ⊢ z1 ∨ ... ∨ zn
...

⊢ ⊥

Where a1 ∨ ... ∨ an, ..., z1 ∨ ... ∨ zn are the clauses resulting from the Tseitin
transform of ϕ. But the clauses are not in general consequences of ϕ, as the
transformation only preserves satisfiability.

Suppose ϕ contains a ∧ b as subterm. We can simulate the first step of the
Tseitin’s transform as follows:

⊢ ϕ(a ∧ b)
1.

A⇔ (a ∧ b) ⊢ ϕ(A) 2.
A⇔ (a ∧ b) ⊢ ¬A ∨ a 3.

A⇔ (a ∧ b) ⊢ ¬A ∨ b 4.
A⇔ (a ∧ b) ⊢ A ∨ ¬a ∨ ¬b

...
A⇔ (a ∧ b) ⊢ ψ

5. instPred
(a ∧ b) ⇔ (a ∧ b) ⊢ ψ

6. elimIffRefl⊢ ψ

Step 1 is rightSubstIff. Step 2, 3 and 4 are constant-size tautologies. Then the
resolution proof follows normally, independently of the A ⇐⇒ (a ∧ b) on the
left-hand side.

Finally, we eliminate the assumption. Step 5 allows instantiating the
schematic formula A with an arbitrary formula4. To justify equisatisfiability,
we need to ensure that A is fresh. Intuitively, this is enforced here by step 5. If
A was not a fresh symbol but already appearing in ψ for example, the initial
part of the proof would still work, but step 5 would fail.

Note that every single step can be unfolded into a constant number of level
1 steps, making the whole proof of Tseitin transformation linear. All steps are
deductive and can be locally checked, independently of the rest of the proof.

4 In higher-order logic, A would simply be a variable of type boolean.
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Tseitin transform with negated-conjecure, propositional, backward
The Tseitin transform allows to reduce deciding the satisfiability (or validity)
of a formula to the satisfiability (or validity) of a different formula in CNF (or
DNF). Let ϕ := ¬ψ be a conjectured formula we aim to show valid by showing
that its negation is unsat. Hence we are trying to prove the sequent

ϕ ⊢

Let ϕ′ be the Tseitin transform of ϕ. We want to simulate the following step:

...
ϕ′ ⊢

Tseitin
ϕ ⊢

For concreteness, let say that ϕ contains a ∧ b as a subformula. In our ap-
proach, one step of the Tseitin transform is performed as follows:

(¬X ∨ a), (¬X ∨ b), (X ∨ ¬a ∨ ¬b), ϕ(X) ⊢
4. Unfold ⇔ into 3 clauses

X ⇔ (a ∧ b), ϕ(X) ⊢
3. Substitution of equivalent formulas

X ⇔ (a ∧ b), ϕ(a ∧ b) ⊢
2. Instantiate X

(a ∧ b) ⇔ (a ∧ b), ϕ(a ∧ b) ⊢
1. Simplification

ϕ(a ∧ b) ⊢

Step 1 is a propositional tautology, easily represented with low level rules.

Prenex normal form, miniscoping and negation normal form Both
Prenex Normal Form and its opposite miniscoping, as well as Negation Normal
Form are typically equivalence-preserving and can easily be proven by repeated
application of rewrite rules for each logical symbols:

¬(ϕ ∨ ψ) ⇔ (¬ϕ ∧ ¬ψ)

¬(ϕ ∧ ψ) ⇔ (¬ϕ ∨ ¬ψ)

¬¬ϕ⇔ ϕ

¬∃x.ϕ⇔ ∀x.¬ϕ

ϕ ∨ ∃x.ψ ⇔ ∃x.ϕ ∨ ψ, with x not free in ψ

ϕ ∧ ∃x.ψ ⇔ ∃x.ϕ ∧ ψ, with x not free in ψ

Example 4.

A
⊢ ∃x.∀y.p(x) ⇒ ∀y.p(y)

substIff∀x.(∀y.p(x) ⇒ p(y)) ⇔ (p(x) ⇒ ∀y.p(y)) ⊢ ∃x.p(x) ⇒ ∀y.p(y)

⊢ (ϕ⇒ ∀y.ψ(y)) ⇔ (∀y.ϕ⇒ ψ(y))
inst⊢ (p(x) ⇒ ∀y.p(y)) ⇔ (∀y.p(x) ⇒ p(y)) rightForall

⊢ ∀x.(p(x) ⇒ ∀y.p(y)) ⇔ (∀y.p(x) ⇒ p(y))
Cut⊢ ∃x.p(x) ⇒ ∀y.p(y)
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Skolemization Consider a formula in prenex normal form with a single alter-
nation of quantifiers:

ϕ := ∀x.∃y.ψ(x, y)

where ϕ is quantifier-free. Its skolemized form is the formula

ϕsko := ∀x.ψ(x, f(x))

with f a fresh function symbol. Then, ϕ ⊢ ⊥ has a proof if and only if ϕsko
has a proof. Similarly, the empty sequent has a proof from ϕ if and only if it
has a proof from ϕsko. However, in general the proof of the original formula is
complicated to compute and may in general be much larger than the proof of
the original formula (exponentially or even non-elementary so). Moreover, the
transformation is non-local: it does not simply unfold into low level proof steps,
leaving the rest of the proof intact, but require transforming it as a whole.

We can formalize Skolemization while making it locally checkable and purely
deductive, by introducing Hilbert’s ε choice operator. ε is a term-level binder
intuitively selecting an element satisfying a predicate, if such an element exist,
and an arbitrary term otherwise. Its defining property is as follows:

∃x.P (x) ⇔ P (εx.P (x)) substEpsilon

When applied to ϕ, we obtain the following proof:

Example 5. Axioms ⊢ ∀x.∃y.ψ(x, y)
Conjecture ⊢
Proof

let(f(x) := εy.ψ(x, y))

A
∀x.ψ(x, f(x))

∀x.ψ(x, εy.ψ(x, y)) substEpsilon
∀x.∃y.ψ(x, y)

Observe that the subproof A can ignore the nature of ε and treat it as a black
box: an uninterpreted function symbol containing the same free variables as the
ε expression. Then A is exactly a proof of ϕsko.

F Example Proofs

Listing 1.1: Example proof from egg: Level 2
%-------------------------------------------------------------------
% Status : Theorem
% SPC : FOF_UNK_RFO_SEQ
% Solver : egg v0.9.5
% : egg-sc-tptp v0.1.0
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% Logic : schem
%-------------------------------------------------------------------
fof(div_one, axiom, ! [X]: d(X, t1) = X).
fof(cancel_den, axiom, ! [X, Y]: (m(d(X, Y), Y) = X)).
fof(invert_div, axiom, ! [X, Y]: d(X, Y) = d(t1, d(Y, X))).
fof(c, conjecture, d(m(d(t2, t3), d(t3, t2)), t1) = t1).

fof(f0, plain, [] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = d(m(d(t2, t3), d(t3, t2)), t1)],
inference(rightRefl, [...], [])).

fof(f1, plain, [] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t2, t3), d(t3, t2))],
inference(rightSubstEqForall, [...], [div_one, f0])).

fof(f2, plain, [] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t1, d(t3, t2)), d(t3, t2))],
inference(rightSubstEqForall, [...], [invert_div, f1])).

fof(f3, plain, [] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = t1],
inference(rightSubstEqForall, [...], [cancel_den, f2])).



Interoperability of Proof Systems with SC-TPTP (Full Version) 27

Listing 1.2: egg proof from the same problem: Level 1
fof(div_one, axiom, ! [X]: d(X, t1) = X).
fof(cancel_den, axiom, ! [X, Y]: (m(d(X, Y), Y) = X)).
fof(invert_div, axiom, ! [X, Y]: d(X, Y) = d(t1, d(Y, X))).
fof(c, conjecture, d(m(d(t2, t3), d(t3, t2)), t1) = t1).

fof(f0, plain, [] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = d(m(d(t2, t3), d(t3, t2)), t1)],
inference(rightRefl, [...], [])).

fof(f1, plain, [
d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t2, t3), d(t3, t2))] −→ [
d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t2, t3), d(t3, t2))],
inference(rightSubst, [...], [f0])).

fof(f2, plain, [![X] : d(X, t1) = X] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t2, t3), d(t3, t2))],
inference(leftForall, [...], [f1])).

fof(f3, plain, [] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t2, t3), d(t3, t2))],
inference(cut, [...], [div_one, f2])).

fof(f4, plain, [d(t2, t3) = d(t1, d(t3, t2))] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t1, d(t3, t2)), d(t3, t2))],
inference(rightSubst, [...], [f3])).

fof(f5, plain, [![Y] : d(t2, Y) = d(t1, d(Y, t2))] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t1, d(t3, t2)), d(t3, t2))],
inference(leftForall, [...], [f4])).

fof(f6, plain, [![X, Y] : d(X, Y) = d(t1, d(Y, X))] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t1, d(t3, t2)), d(t3, t2))],
inference(leftForall, [...], [f5])).

fof(f7, plain, [] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = m(d(t1, d(t3, t2)), d(t3, t2))],
inference(cut, [...], [invert_div, f6])).

fof(f8, plain, [m(d(t1, d(t3, t2)), d(t3, t2)) = t1] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = t1],
inference(rightSubst, [...], [f7])).

fof(f9, plain, [![Y] : m(d(t1, Y), Y) = t1] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = t1],
inference(leftForall, [...], [f8])).

fof(f10, plain, [![X, Y] : m(d(X, Y), Y) = X] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = t1],
inference(leftForall, [...], [f9])).

fof(f11, plain, [] −→
[d(m(d(t2, t3), d(t3, t2)), t1) = t1],
inference(cut, [...], [cancel_denominator, f10])).
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Listing 1.3: Example proof from goeland
% SZS output start Proof for lisa.maths.Tests.buveurs.p

fof(drinkers, conjecture, (? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6)))))))
.

fof(f9, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6))))), ~((d(X4_8) ⇒ d(Sko_0))), d(X4_8),
~(d(Sko_0)), ~((! [Y6] : ((d(Sko_0) ⇒ d(Y6))))), ~((d(Sko_0)

⇒ d(Sko_1))), d(Sko_0), ~(d(Sko_1))] −→ [], inference(leftHyp,
[status(thm), 4], [])).

fof(f8, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6))))), ~((d(X4_8) ⇒ d(Sko_0))), d(X4_8),
~(d(Sko_0)), ~((! [Y6] : ((d(Sko_0) ⇒ d(Y6))))), ~((d(Sko_0)

⇒ d(Sko_1)))] −→ [], inference(leftNotImplies, [status(thm),
6], [f9])).

fof(f7, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6))))), ~((d(X4_8) ⇒ d(Sko_0))), d(X4_8),
~(d(Sko_0)), ~((! [Y6] : ((d(Sko_0) ⇒ d(Y6)))))] −→ [],

inference(leftNotAll, [status(thm), 5, 'Sko_1'], [f8])).

fof(f6, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6))))), ~((d(X4_8) ⇒ d(Sko_0))), d(X4_8),
~(d(Sko_0))] −→ [], inference(leftNotEx, [status(thm), 0, $fot(

Sko_0)], [f7])).

fof(f5, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6))))), ~((d(X4_8) ⇒ d(Sko_0)))] −→ [],
inference(leftNotImplies, [status(thm), 2], [f6])).

fof(f4, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))), ~((! [
Y6] : ((d(X4_8) ⇒ d(Y6)))))] −→ [], inference(leftNotAll, [
status(thm), 1, 'Sko_0'], [f5])).

fof(f3, plain, [~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6)))))))] −→
[], inference(leftNotEx, [status(thm), 0, $fot(X4_8)], [f4])).

fof(f2, plain, [(? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))] −→ [(?
[X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))], inference(hyp, [status(
thm), 0], [])).
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fof(f1, plain, [] −→ [(? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6)))))),
~((? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6)))))))], inference(
rightNot, [status(thm), 1], [f2])).

fof(f0, plain, [] −→ [(? [X4] : ((! [Y6] : ((d(X4) ⇒ d(Y6))))))],
inference(cut, [status(thm), 1], [f1, f3])).

% SZS output end Proof for lisa.maths.Tests.buveurs.p
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